-

oot
w
—~—
e

Preductivity Engineering in the UNIXt Envizonment

Design and Implementation of a CMOS Chip for Prolog

Technical Report

S. L. Graham
Principal Investigator

AD-A198 304

(415) 642-2059

-
-

5 5‘-' s
LS
54

W

l.‘
< <

“The views and conclusions contained in this document are those of the authors and ::': .

should not be interpreted as representing the official policies, either expressed or implied, -:::-:‘:»-

of the Defense Advanced Research Projects Agency or the U.S. Government.” *-::*:";
YN
T

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

D l lC _-;::’.:

g -’:‘J‘?

Arpa Order No. 4871 ELF 0 E % :{:.;
, JUL 25 1988 v e

W

+UNIX is a trademark of AT&T Bell Laboratories

hshEACTION §YATERERT X

g . Ayuproved for public ralocme;

Do ariostop Uidizatedd !

(*‘f""‘-‘f‘--

. WO W s

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

T S T L AT, AL A A

-

L3 d
- X
-

[PR
i A

PERS

¥y _u_ e '.'
LG LA

e

,-'.',: @y

x & S

2E a5
SOLL RAllrei

IR

R A O R et o O R U W

'_I‘ .- .
FECURITY CLASSIEICATION OF YHR PAGE. ;/4 b '

REPORT DOCUMENTATION PAGE

B T T TSy S = e
1a. REPORT SECURITY CLASSIFICATION
unclassifies

1b. RESTRICTIVE MARKINGS

2a. SECURITY C! ASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILIT * OF REFORT
unlimited

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL
The Regents of the University (If applicable)
of California

7a. NAME OF MONITORING ORGANIZATION
SPAWAR

6¢. ADDRESS (City, State, and ZIP Code)
Berkeley, California 94720

7b. ADDRESS (City, State, and ZIP Code)

Washington, DC 20363-5100

Space and Naval Warfare Systems Command

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL
ORGANIZATION (if applicable)

DARPA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

10 SOURCE OF FUNDING NUMBERS

* DESIGN AND IMPLEMENTATION OF A CMOS CHIP FOR

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. [NO. NO. ACCESSION NO.
V1. TITLE (Include Security Classification)
PROI.OG

12. PERSONAL AUTHOR(S)
% Vason P, Srindi, Jerric V. Tam, Tam M. Neuven

Bruce K, Holmer, Yale N, Patt., Alvip M, Desp

13a. TYPE OF REPORT 13b. TIME COVERED
technical FROM TO

14. NATFE N REPORT (Year, Month, Day) ['5. PAGE COUNT

* March 1988 *

123

16 SUPPLEMENTARY NOTATION

-
~¢

FIELD GROUP SUB-GROUP

COSATI CG0es 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number}

Enclosed in paper.

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

@& uNCLASSIFIEDAUNUMITED [SAME AS RPT. [TJ DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
unclassified

223. NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (inc/lude Area Code) | 22¢ OFFICE SYMBOL

DO FORM 1473, 84 MaR

% W 0 T O ke 0 WO IR S S AR T VAL TS Y, W
"..\ ASASR W5 + 9, WARIALW, |,...i

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF TH!S PAGE

DAl

‘\-.,.‘ ‘~_ I* \.. \..:-‘--'. l.’ \.\‘I‘. - -v_‘«-v.'.‘-.‘ ‘.'

- 4
et rm s
SRS ¢

"0

F

L)

.

oo

h g

Sl

P A
'i‘n'n'v':fj
’{}

5|

3
x

)

T
lll’/"“

.. ...‘
L 1,2, 4 !
A

.
’

K
s
PRy
A LA

S

s

X

.

. E,

P
d"
ny
g

{‘I
L]
r A
'é

N
e
M)

(N

’
T e

ol
2 -
)

".

[l s

s
Y

Ty

.
.
'
!
g

P

&

oA

e

- 'y
A N
e '.‘1. /

o
‘e

Fd

?‘
o g,&_

A I R Y AR UYL UV UV WUV IO UV

DESIGN AND IMPLEMENTATION %
OF A CMOS CHIP FOR PROLOG o
W

! Vason P. Srini, Jerric V. Tam, Tam M. Nguyen, ey
Bruce K. Holmer, Yale N. Patt, and Alvin M. Despain o,

L Computer Science Division ::;vf',
University of California, Berkeley, CA 94720 e

. ABSTRACT o
L We have designed and fabricated a high performance VLSI chip for executng Prolog programs = *- ; ‘ ‘(‘“

: using a 1.4 micron CMOS technology with two layers of metal. This chip implements a tagged architecture

oL Y

o
(2

with hardware support for five stacks. The 32-bit data path of the chip contains a fast ALU, 64 registers in)

L

four groups, five counters, and six non-master/slave registers. The control is microprogrammed and uses a |'
-

L

512 X 160 bit ROM with four pages for fast microbranching. The chip operates at a cycle time of 100 ns

P ELLST
'-".\ A

P
%

& %4

(worst case) and has a size of 10 mm X 9 mm. A semicustom design methodology employing Mentor and

“a” 3
r e
LN

NCR 1ools has been used in this design. The challenges involved in the design, verification, routing, and

<

r

-~

fabrication of the chip are described.

.'{“v'.n',
G Y NS
PR AT R

.
’

oLy
?’l}l]

L Wi ol o v SRS |

l,‘
.'f‘.'
=5~ 1@

<

.{'..,

s

3
S
*x
7

2 -
s

<,

4

P

CERCEEAL LR oy T A S T STy R v R N N R P NN, S T ety
- . N a b - h ¥ ! [a¥ B MoV) b

1. Introduction
2. Microarchitecture
3. Datapath
- Bus Design
- Alu Design
- Counter Design
- PDL and Exception Handling
- Register Design
- Static Bus
- Register Groups
- Collision Detection
4. Microcontrol Design
- Status
5. Rom, Mir, and Instren Design
- ROM
- Microcode generation
- MIR design
- INSTREN Design
6. Design Verification
- Functional Simulation
- Timing
- Timing Simulation
7. Physical Level Design
- TOPHER
- Cell Routing
- Block Routing
- Analysis
- Global Routing
8. Conclusion
9. Appendix

Table of contents

DY(IC

coPY
INSPECTED

6

DTIU TAR

LAccession For
719 GRA&L

TR
(g
77,

%

List of Figures

PLM System

Top Level View of VLSI-PLM Chip
Stacks of the Data Space

Block Diagram of the Microarchitecture
Floorplan of a bit-slice of the chip
ALU’s Top Level Diagram

Counter Block’s Top Level Diagram
PDL Block’s Top Level Diagram

. MDR Block’s Symbol

10. MDR Block’s Details

11. Register Files’s Details

12. Block Diagram of the Microsequencer
13. Circuit Diagram of ROM

14. Timing Diagram of ROM

15. Pinout of the Chip

16. Block Diagram of the Design Verification Process
17. Layout of the Chip

18. Environment Frame

19. Choicepoint Frame

20. Data Representation

21. State Diagrams for the Instructions

22. Block Diagram of the RTL Simulator
23. Sample Input to Gate Level Simulator
24. Sample Output of Gate Level Simulator

OO ARLD =

S R R R A AT A 1N
VR LR St

,
{

- .;~. J

.t &y
-~
~

L
4‘*”-}11
N

oy
;f’

-
1

RN
ARAIR
',

vy's
id

«

A et A R A T T T T G
.&{s'n‘.\.'-':‘-';\ .\f\{\..-\'. . \.'-_’": . .\-'_ PR

Eat T 0et € 2 0.t T e ey Yy Py e a\e e dkedis" TP R PR TRTIy
AXEERKTR TREAKTEN O RO ‘0008 ipgte WY W ey ¥R, W v w S AN T B S tad

|

RN ‘."'\"‘\v;'.' A Vi S CIPAY PO I VO P UL I S N N PO PR . . T
X)) 4

1. INTRODUCTION

The current trend in computer architecture is to develop high performance archilectures that execute
programs used in artificial intelligence (Al) in general and expert systems in particular. Lisp and Prolog
are two of the major languages used by the Al community. The Aquarius project at Berkeley has been
addressing the problem of designing and building high performance processors for Prolog since 1983.
Three Prolog systems have been designed and two of them have been constructed. The three Prolog sys-
tems are coprocessors o a host such as the NCR 9300 system or the SUN workstation. They are different
implementations of the Warren Abstract Machine [10,11]). The Warren Abstract Machine involves
translating Prolog programs 10 an intermediate language, called W-code, and from there to the machine
language of the host processor. Machine instm'cu'on's are then interpreted by the host microcode to control

the daia path of the host microengine.

Fast execution of Prolog programs requires architectural support for procedure calls, unification, and
backtracking. Although hardware support for procedure calls is available in many of the commercially
available 32-bit microprocessors, not much was known about supporting backtracking and unification in
hardware until 1983. Since unification requires knowledge about the data types of the terms being unified,
a tagged architecture is almost a necessity. Otherwise, the execution of Prolog programs is slowed down
significantly. A tagged architecture for Prolog has been developed at Berkeley based on the Warren
Abstract Machine (WAM) [10,11]. The ﬁrsl‘syélem developed at Berkeley translates the instructions of
the abstract machine [11], called W-code, directly to the microcode of a special purpose processor
designed for interpreting W-code. Thé architecture for the special purpose processor, called Prolog
Machine (PLM), has been designed by Dobry {4]. The PLM includes only those features that are deemed
necessary by the the results of extensive simulation. The PLM has been constructed using TTL parts and
runs at a cycle time of 100 ns. The PLM is connected to a host processor, an NCR 9300 system, to do 1/O,
floaling point calculations, and diagnostics. The performance of PLM for benchmark programs and com-

parison to othcr systcms have been described by Dobry [5].

The sccond system generates vertical microcode for a general purpose processor, the NCR 9300 sys-
tem, from W-code [7]). Threc significant pieces of software are used in transforming Prolog programs 1o

exccutable NCR/32-000 microcode: a Prolog compiler, a microcode compiler, and an assembler. The

g . A Ca e L e e e e e e S e e Lt
b N N A N N A A A A A A A TN N A SR

PR ATARTIESEAEY o« Cu

S

LY
%,

" it A
S oA
‘»"f‘.’—’\'&

W
»
w

S -

o 2
-

]

N >

a

r .
e
PR

\"‘-'I‘-‘IF <
B e T
7"‘," "',,,",.T.',E_r

5,
%

t. " -

St
f [4 I..(5"5(“ »

GG

Ny

P

RN

BN S
DK Py
xs‘-.'.".<
_{(:’t’ (‘,$‘

"y s
2 ¥
5 S

o

«
a s
s o d

I

N O T T

b e

h Y AT
L

study showed the importance of tags and special purpose architecture and compared the performance of

NCR/32 [1], with that of the TTL implementation.

The third implementation is a VLSI design of PLM. This report describes the design of a 32-bit
microprocessor which combines the architectural features of the PLM with a static CMOS implementation
to create a processor with high regularity, low power dissipation, and a small instruction set. The design
has been implemented using a semicustom methodology with standard cells supplied by NCR corporation.
Macrocells such as ALU, register file, counter, and ROM have been designed and used in the processor.
The chip is constructed using a 1.4 micron feature size CMOS process with two levels of metal for inter-
connection. The chip requires 120 pins and has a size of 10 mm X 9 mm. It is housed in a pin grid array
package with 192 pins and dissipates 2 watts. The chip is designed to be a coprocessor for workstations
such as SUN-3 and NCR-Tower. Since Prolog programs are memory intensive, a cache is assumed
between the chip and the host processor with a read time of 100 ns for cache hits. The availability of a
cache allowed us to move the maintenance control unit and the instruction prefetch unit off chip. The chip
is designed so that it can be interfaced to standard buses such as VME and MULTIBUS-II. A block

diagram of a system using the chip is shown in Figure I.

The chip design and simulation have been complex because of the nature of Prolog, the 100 ns cycle
time, and its large size. The need to support backtracking and unification in hardware, and the use of cdr-
coding for lists and structures have contributed to the complexity of the architecture. Although the PLM
architecture has a small number of instructions (< 60), many (> 16) of which require several (> 9) cycles 1o
execute. The data path has 1o support six simultancous register transfers and communicates address and
data o memory in a single microcycle. This requires a minimum of 8 buses. We had to tradcoff space 10
achieve the 100 ns cycle time. For example, instead of using 8 buses that would run the length of the chip
10 support the register transfers, we usced 11 buses of which three run the entire length of the chip. This
approach reduced the bus capacilance without taking extra area for buses. The complexity of the input and
output parts of blocks is also reduced. It also increascd the number of possible paralicl transfers within a
single micromnstrucuon. The price we paid for uus i3 8 extra bits in the microinstruction. The second layer
metal in the CMOS process is used for the buses, VDD, and GND. The details of the PLM architecture are

shown in Scction 2.

.. & L& o - , e ¥ - ™ ", - - " " = -
T S R R P A A R Nt L R R T CR L (o
& WAV PN oA AT O

[1

KhAi
X

.l "»
3

l'. ',

SANNNS

A

(\(‘a"- "
5% %S

> %
«
(-

'ﬁ- L
.

e

¥

'.)-_\a "

e

N
IR PN
ratRb e

L 2 B8 R Rt Ny R Uam ot Su Tat Nt Ret Fov Ga¥ e si® Go~ Sat Bas Ho° sa~

(RO RS 4" 07 2" o o W.wgriw:‘
..

®
A A
NN
o J
3 NN
Ny
LA ﬁﬁf !
Al
Pl
. . . NS
Achieving the 100 ns cycle time presenied many challenges. For example, the critical path in the o
SASA0
data path contains a register file, an ALU, and a register. To achieve the 100 ns cyclc time, a 16 word regis- : ni,
l~ !
ter file with a rcad time of 30 ns and a 28-bit ALU with an add/subtract time o” 40 ns are needed. The . ._.#
microscquencer's critical path contains a ROM and next microaddress calculation circuit. This requires a A
ROM (512 X 160) with a read access time of 40 ns. The next microaddress must be gencrated in 42 ns .'r'_":"
RN,V
LY
based on the status information supplicd by the data path. Furthermore, the logic in more than 300 LSI and -‘\":f.
-
A SAS
MSI chips occupying two hex size boards in the TTL version of PLM have to be put in a single chip. The SRS
®
top level view of the chip is shown in Figure 2. It contains the major units of the chip and the logical con- WG R
Ao
nections between the units. The design and implementation of the data path is described in Section 3. Sec- t‘:\':‘w
l~ f
AN,
tion 4 describes the microsequencer. The design of the ROM, microinstruction register, and the generation f.:‘v::'_r
. calk.
of interface signals are discussed in Section §. . ._-_,.._
e
Ry
The major challenges came in the verification of the design and routing the chip. The design o~ ‘-f:-
.)
verification process is described in Section 6. A hicrarchical methodology is employed by NCR in routing ::g.\
the chip. The size of the design (> 20,000 gates) presented significani challenges in routing the chip. It is - .__!_;
Ny . o e
described in Scction 7. ';";-.::
B
To simplify the debugging process, static circuits are used everywhere except the ROM. The ROM -.»‘\-'-'-_',
precharges output lines 10 achieve the 40 ns access time. The buses uscd in the chip arc al<o siztic A .r._n..,,
',:-. O
number of features have been added 10 support testing. For example, the microinstruction register (MIR) f.:::'h\& .
A
and the registers containing the machine status are LSSD registers. Some generic microinstructions have :‘_2"-,& e
L)
been added to read the contents of regisiers and 1o set values to them. Seven pins have been added to the .
-
SOA
, . Pty
chip for testing. ;é::i (
a0l
The chip uses a two phase nonoverlarping clock. The clock skew is controlled by running the two :'J' j:: Q
\.‘.\ A\
clock phascs through the length of the chip using 20 micron wide metal lines and distributing the phases @
TREEGN
RS
locally in each of the blocks. Overall, the semicustom design mcthodology allowed us to achieve the \i\
A Sy
Sea
desired performance by redesigning the macrocells in some of the blocks without affecting others. The :-.':‘.'::
- ..\" -
design tune has also been reduced because of the use oi standard cells. However, changes havo w be made -~ ‘.
to the commercially available tools before they could be used in the design of the chip. This caused J}\H:\ v
'.r*\.-"v
significant delays in simulation and physical design. :::._
N
e
..
PR
oty

>
AR, LT P T TN TR A e
*k.h&iiiﬁ%‘:ﬂl’b':‘.':\\\t\i ..'-':‘-'_

T A R T L T L o A R N o S M Y T WV i W VL UV W VIO POV oW haSo
Y o 92" oH - UV W A A

'x'_\'_

o555

F Y
[N
} | 3
'3:?-. iy

%
Ao

2. MICROARCHITECTURE

._,_'
&

The microarchitecture of the chip contains hardware for manipulating five stacks. These stacks form
the data space of a Prolog process. The code is kept in a separate area. The separation of code and data is
r intended for the efficient management of memory, changing clauses in the code space, and fast access 0
data bases. The organization of the dala space and the pointers to manipulate the stacks are shown in Fig-

ure 3. The control stack (hereafter called "the stack”) is the area in memory used for storing control infor-
F mation. Two kinds of objects may appear on the stack: environmenis, and choice points. An environment
represents the saved state of a Prolog clause: it contains pertinent register values, and what are known as

"permanent” variables. Permanent variables are variables needed by more than one goal in the body of a

h clause; they must be saved so that succeeding goals can access them. '¥:~:?
L
A choice point is a group of data words containing sufficient information to restore the state of a ‘-;:
computation if a goal fails, and 10 indicate the next clause to try. Choice points are placed on the stack by .-:E"
special instructions when entering a procedure containing multiple clauses that can unify with the current ;:f
goal. Choice points support backtracking, a feature unique to Prolog. Choice points contain the pointers ;_-)’. !
shown in Figure 3, siate registers, argument registers, and continuation pointer. The choice point frame 5';
and the environment frame are shown in Appendix 1. :::r_
The beap is the area of data memory useg for the stcrage of lists and structures, which are 100
cumbcrsome to be kept in environments on the control stack. It is allocated incrementally like a stack, and
deallocated in variable size blocks.
The trail is an arca uscd for keeping track of variable bindings. When a variable becomes bound
during the course of a Prolog program, it may become necessary to undo the binding when backtracking is
done. Thus some method is needed for keeping track of all bindings that are to be undone when the current
goal fails so that the variables they refer to can be unbound again,
The PDL is a small stack created for the unification of nesicd structures and nested lists. The
H2space is an area of memory used for global vanables, sysicm tables such as symbo! table, process table,
and page lable. It will bc used extensively in the execvtion of concurrent processes resulling from AND :
parallclism and OR parallelism. ::‘:
bﬂ.
Ny

The data and code memories are word-addressable with 28-bit addresses. In a 32-bit word, 28 bits
are used for storing data and addresses. The most significant four bits are for tags: 2 bits for data types, 1
bit for cdr-coding, and 1 bit for garbage collection. Since tags are not used in arithmetic operations, the

ALU performs 28-bit add/subtract. The data types and their representation are shown in Appendix 1.

The pointers needed 1o manipulate the stacks are also shown in Figure 3. In addition there are argu-
ment registers, tlemporary registers, and 16 registers for stonng constants. Many of the stack pointers arc
actually 28-bit counters. This allows further concurrency in the microarchitecture since increments and

decrements need not go through the ALU. A block diagram of the microarchitecture is shown in Figure 4.

The instruction set supported by the microarchitecture contains ten classes. They are shown in Table
1. The dynamic frequency count of these instructions for a class of benchmark programs, maximum
number of data transfers, and the execution cycles are also included in Table 1 to show their relative impor-
tance. Additional details can be found in Dobry [S]. The procedure control instructions create choice
points and manage them. The indexing instructions act as filters to prevent the execution of clauses which
the compiler can determine will not unify with the invoking goal. The clause control instructions sequence
between subgoals in the body of a clause, invoke builtin functions, create an environment, and remove an
environment from stack. The get instructions unify the calling subgoal’s arguments with the head of an
invoked subgoal. The put instructions load the argument registers prior to invoking a subgoal. The unify
instructions construct structures on the heap (write mode), and unify the structures (read mode). The arith-
metic and logical instructions perform arithmetic operations on 28-bit numbers and logical operations on
32-bit numbers. The jump instructions look at the state of equal and less than flags and jumps (0 a specified
location. The load and store instructions read from memory and store in memory. The miscellancous
instructions is the last group and allows booting the system, reseting the stack pointers, and halting the pro-

cessor by looping on a microslate.

In addition to the above instructions, there are six fundamental operations (primitives) to suppon
Prolog. They are fail, trail, dereference, decdr, bind, and unify. They are not available 10 the programmer.
The fail operation restores the machine state when a failure occurs during unification. The trail operation
manages the trail stack during binding if a variable is to be trailed. The dereference operation follows the

chain of pointers which occur due to binding of variables to other variables during unification. The decdr

NATRINII I

‘.-‘-‘--“- e W AT RS OISR &
y AEATAIR LTy FY Fadh visteit S st

!

l‘ "
v, ..*n ‘n

.
-
™

[y
N
e '~
"\ *ﬁ
r\ ‘-\

N A
fr
~o
’\ .

»
kY

v ."70

b3
& &

l_.(/./f

h)

[
Aol
)

<
fﬁ

’"f¢ﬂ

Ry 5y
SO

v
o
«

e

P
f' e 5
T = '.l

I I AT 1
v
%5
)
oo

l' L]
P
1"

a

.
v

»

e
gt h fy

u;\ A
Nt
% N

daialiaiatialiaib et i e it S AR AR R A AL G AL LA LGt g 476 L W KD At by’ A4 et bk St et e ‘a

e

B 2N
[XA
o ”{‘.r"l

operation supports cdr-coding of lists and structures. It is used to feich the next element from a list or struc-
ture. The bind opcration stores the data value at a given address. It may call the trail operation to see if the
L binding must be trailed. The unify operation unifies arbitrary Prolog items, binding variables as required. It

uscs the PDL during the unification of nested lists and structures.

A simulator has been written in C for the microarchitecture. The simulator accepts W-code and pro-

duces the state of the architecture for each cycle. The state information includes the contents registers
i MDR, R, T, T1, MAR, §, N, and the condition codes. The simulator can also produce the stimulants for the
QUICKSIM simulator of Mentor's IDEA system for the logical simulation of the chip. The structure of the

simulator is described in Appendix 1.

3. DATA PATH DESIGN AND IMPLEMENTATION

A hierarchical design methodology employing semicustom tools was chosen since we wanted 10 do a

single chip implementation of the microarchitecture in the shortest time possible. The availability of 1.4
micron CMOS technology with two layers of metal and commercial design tools (Mentor Graphics® IDEA
Station), and the suppon from NCR for routing and fabricating the chip were the additional factors in our

choice of the methodology. The logic level design and simulation, timing simulation, and architecture

St

development took place in Berkeley. We used NETED and SYMED programs of IDEA station to do the

ot
schematic capture. NCR-Fort Collins designed the cells and the macrocells for the chip, routed the chip i::.':
and fabricated it. The details of this physical design are described in Section 7. '.r;:‘?:'
The design of the chip involved three major parts: data path, microsequencer, and the support circui- .
\ try. We expected the chip area to be dominated by the data path and so concentrated on making it regular. .
L Since our goal is not just 1o come up with one processor for Prolog, we also concentrated on designing the :,'
data path so that parts of it can be reused in other designs. \‘.
The 32-bit wide data path is dominated by registers and counters. This can be seen in its floorplan J_""
. for a bit-slice, shown in Figure 5. Each block in the data path can transfer data 1o many destinations simul- ‘
tancously. We use tristate buffers controlicd by a microbit for cach destination. Each block has a multi- :_
plexer 1o select one of the buses as its source. Therc is a microbit for each source. The modular design of E;_:.
the blocks simplified checking and routing. Since the bus delays have to be reduced as much as possible o ?:::
>
]
N

B A N A N AW N NN T e vy .
e W - ST et Attt P TR R catar
N AN AR PG \."'s'f.mtﬂ‘:ﬁ\"_\ffh‘:..-..A":.‘i',;hf.g.;'.-.x; T A AT AT N AT A

P M NN L U U I YOy Ry NI SN W WA WY W AT Wy AR - »
v oW Bt ¥ ot ol 0 obin 0 7aad 4 Y Ve gl T T

.
L}
:
LY
i~

Sl

r
Pt ™S

b

';I.'fl:'é‘ *
rmre O

v—
e A0

allow enough time for the activitics in a block, considerable effort went into the design of buses.

e TN
II‘.I’

P
&

L BUS DESIGN

The total number of buses and the length of each bus are two important cniteria in the bus design for o
the chip. If the bus length is kept 10 a minimum bus transfer time can be reduced because of reduced bus N
capacitance. The number of buses affects the chip area in the data path. Reduced number of buses also ;._
b decreases the routing complexity and decreases the area needed for the buses. The placement of the blocks "-'. ’
in the data path and the number of simultaneous register transfers in the microstates determine the number s,

of buses and their length.

We analyzed the register ransfers in mic}oslales and the eight buses used in the TTL version of PLM

A o
-t
':i.
< b

[N

10 come up with an initial placement for the blocks in the data path and the number of buses. Two different :".E"
bus designs have been proposed and evaluated. The first bus design kept the buses used in the TTL design. -'*'.(:
LAY

Il,’
2,

Thrce more buses are added to maintain compatibility with the microstates of the TTL design, diagnosc the

!

:""fq

AR

chip, and to suppon future additions to the microcode while implementing some of the built-in functions.

(.

The second proposal contained a total of eight buses. It maintained compatibility with the present micro-

¥ v
LA
"y &
v
-

v
)
hd

states of the TTL design but did not maintain compatibility with the buses in the TTL design. We feli that

i

this lack of compatibility could cause microstate compatibility problems in the future when new microin- NG

.¢“f

structions are added. So we have decided on the first design. The placement of the blocks and the eleven :_\-::
1]

L
g

2

buses connecting the blocks are shown in Figure 5. We used a program to detect bus conflicts in each of

the microstates during the bus design. This program is a key tool to be used in adding new microstatcs 0 ﬁ? ,
N
the ROM. The second level of metal is used for the buses. Bus routing is simplificd by butting the blocks ‘l:'_-:'.:-“
as shown in Figure 5. The top level diagram of the data path showing the connections between the blocks -:‘_:.'.".._
.'-.\-.
is included in Appendix 1. o
i. +
The design details of ALU, counters, registers, PDL, and regisier files are now described. 5’:{ '
e
w L
o
.‘i-\."'
ALU DESIGN ®
ey
The data path contains an ALU for doing arithmetic and logical opcrations. It performs arithmetic ::a::)
on 28-bit numbers and compares on 32-bit quantities. The design objective is (o finish the longest operation _':-\::\
'-':‘..

'J\;n"-"n"l-(‘-r_-"'i‘ W A W T T, N AT W W et s W, e e e D
AT, SR VRS L CE AN NS - TN N s A AT
A e s AV o s AT e Y B N N o A e T A R

e LIPS P)
Aidadaacaldasaliass

{add/subtract) in the least possible time using the smallest area possible. The clocking scheme allows 40 ns

afier phase 0 goes low for the ALU to complete add/subtract operation. This timing constraint requires the
use of some parallel carry generation scheme. We use the P-circuit [9] with pre-conditioning and post-

conditoning [2, 3] circuits to generate the carry.

The implementation of the ALU using standard cells and a semicustom design methodology imposes
some constraints on the designer. For example, the fan-in, in addition to fan-out of the basic cells should

not be large on the critical path; otherwise, the delay in the circuit would be large.

The ALU comprises four blocks: an input block transforming inputs according to the control signals,
a compare block testing whether the inputs are equal, a parallel prefix calculation block generating the pro-
pagate (P) and generate (G) signals needed for carry calculation, and a sum block supplying the final
result. The top ‘evel view of the ALU is shown in Figure 6. The functions of the ALU are similar o that of

the AS181 chip, but it uses a fast carry evaluation method to achieve high performance.

In the input block, the P and G signals for each bit are generated according to the control signal and
inputs. The compare block passes the inputs through exclusive OR gates and then tests to see if all the out-
puts are zcro. The tesling is done using a tree of NAND and NOR gates and is performed in parallel with
other ALU operations. We could have put the testing circuitry after the sum block, but ‘our approach
removed the testing from the critical path. However, the alternative method would allow us 10 test for zero
output which might be generated from logic or incrementy/decrement operations. This testing cannot be

done by our approach. There is no loss of functionality since the TTL version does not test for zero output.

Considerable amount of effort went into the design of the paralle! prefix calculation block. The basic
architecture is derived from the works of Ladner and Fischer [9). The pre-conditioning and pos!-
conditioning circuits invented by Despain [2] are incorporated to reduce the fan-outs in the design of the
viock.

NCR standard cells are used to implement the ALU and some new cells are added 1o optimize the
critical path. At each iteration, NCR software tools are used to identify the potential critical paths, and then
intensive SPICE simulation runs are used to obtain beuter esumates on the delay. We have designed an

ALU that performs add/subtract with a worst case (VDD = 4.5V, Temperature = 80 C) delay of 37 ns.

NN AT A T T O

/.
A %
A
'

e
“

I~-
~
~

I YA R A
PO PRIV, V. FO VUV, UL o S A

Since the PLM uses the four most significant bits for tags and cdr coding, the ALU needs to separate '..‘:
e

them from the real data if overflow detection is to be done. So, the ALU performs arithmetic operations] .“
on the least significant 28 bits, while the the logical and comparison operations are done on 32-bit inputs. ;'- :::5:%
However, there is still anomaly over the secondary tagging. Currently, the ALU tests for overflow from bit !f'.!'
28, while the secondary tagging takes place on bit 27 and bit 28. No small integer (26-bit integer) overflow Ef‘;’
is caught since the additional logic needed to check the data type will slow down the ALU. i:i;

Since only 28 bits, instead of 32 bits are needed in the carry calculation, further optimization based "b: ‘
on the Q-circuit ideas proposed by Despain [3] is implemented. The general idea is to use circuits with f::;;-:"
fewer gate delay levels to drive those with more levels, and thus try to absorb the propagation delay which . 'E:;-E:i
is both unavoidable and significant in MOS circuitry. The control 10 the ALU consists of 4 bits, §3, §2, S1, "'::."' -

and SO. In addition, a mode bit M controls whether an arithmetic or a logical operation is performed. A

XN
o
carry in bit (Cn) from the microinstruction controls whether the initial carry is zero. The functions imple- N ::‘
. oy
mented by the ALU are shown in Table 2. H‘,‘m
..
Note that there are many unused entries in the able and it is possible to do further optimization. ',:'-::\;
r:.-:: ’
i
v
COUNTER DESIGN et
The data path contains five counter blocks: H, H2, T, §, and MAR. These counters are important for :f';. . 3

g R x_
ﬁ:'k{'n

high performance. Since data space and code space addresses are 28-bit wide in our architecture, the

counter blocks do only 28-bit counts. However, they can store 32-bit values. The counters are used for < _.'
pushing and popping the stacks in the data space. Each counter block contains a 32-bit master/slave regis- ';_:::1
ter and counting logic. A carrylookahead scheme is used to achieve a worst case count delay of 60 ns. The -S:::::
28-bit counter is implemented in three stages. The first stage contains 8-bit carrylookahead circuit. The :E.:E'
other two siages contain 10-bit carrylookahead circuits. The carry ripples through the three stages. :i:
Each counter can perform four functions: load in new data from the selected bus, increment by one, _':E
decrement by one, and hold current value. The design objective for the counter is 1o obtain the new count- \"‘-ji
ing value within the specified time limit, using the smallest area possible. I i
Our clocking scheme allows a worst case delay of 60 ns for the counting logic alone (70 ns for ;
counting and transfer). This timing constraint requires the use of somec carry lookahcad scheme. For .‘."i:
]

.

TSN

------ o

e e
WA VRGN VSTV IR Y.

I\.
L:,s.'
¥
Y,
3
.
A
P
<
N
X
XA
h'.\ .

& .
5
Y
¢

10

efficient use of area, regularity among the 28 counting bits is desirable. We started our design from the
basic counting equations (o0 examine the possible logic circuit organizations. First, we viewed the counter

as an addcr; that is, incrementing is adding a positive one and decrementing is adding a negative one (in 2's

Al L Bt A LUEUL LRt O A U A 4L LAl L S M A LA LA AT Aot Al i £ 1 4015 S S AN AR S A - g 48 a0 ek ae > pe e

» complement). Consider the following basic equations for addition with carry Jookahead:
G =AB
i i
P=A ©B
» i i
C =G+PC
i+ i
S=A€B C
i i i i
L where A and B are the values to be added; G is carry generate signal, P is the carry propagate signal; C is
the carry; and S is the resulting sum. :“‘\1“5:
>
Let A be the data currenty stored in the D flip flops (DFF), let B and C (the initial carry in bit) com- ".',tj'?
0 o]
. '** "
bined to be the value to be added to A. For counting up, assign B=0 and C =1 to obtain the effect of N ;
i 0 T
.9
adding a positive one. When counting down, set B=1 and C =0 10 add a negative one. There is an active KNG
i 0 Adn
low control signal UP, which specifies the counting direction. The counter increments when UP is low and :._:“'
decrements when UP is high. By substituting UP for B , . :; \
i XS g
@
S=A &UPEC IR
i i _ i "-.-".)-
C =ACUP+A+C)UP R
iv] i i NN
Unrolling the recurrences for C , we get NDOR
i « " P
C=(A A ---A)CUP+A +--+A)UP+C UP 2
i =1 =2 0 0 i=1 0] AN
N
The equation above describes the logic of the camry circuit for an n-bit counter block with n-bir :'j:'_‘: '
carry-lookahead. C is the iniual carry into this block and C is the carry out of this block. The resulting ',:3-"::
0 n E
values are stored in the sum bits S throughS . The Jogic circuit of this n-bit block is made up of 2 dif- | :{:-_'.
0 n-1) ..- ‘g’\
ferent bitslices, each bitslice contains the suming logic, the DFF to store the result, and the generation of Lo :
"N
-
carry into the succeeding bit. The carry generation logic for the bitslices are shown below. Il ::xz A
v %
! L
s
NN
b
A
’ { (ﬁ'f\\.
k N
AN
Sy . s s e mew . - f '-{\."
O I I R I R N Y N S O O B N P TN T T s 1y

R o

Bitslice type ‘a’, used for bit 0:

cnand = C *UP
0

andline = A
1 0

orline = A
1 0
C =cnand*A UP*A C
1 o 00
Bitslice type 'b’, used for bitsi=1ton-1:

andline = andline A
i+l i
orline =orline + A
i+ i i

C =cnand (andline C) (orline UP)
i+l 0 i+l

i+1 i+

An n-bi1 block consists of one bitslice 'a’ and n-J bit slices 'b’. We call each such block a stage.
The 28-bit counter is made up of three blocks, where the values for n are 8, 10, and 10, respectively, with
the 8-bit block being the least significant. The carry out of the first stage is connected to the carry in of the
2nd stage, and the carry out of the 2nd stage is in tum tied (o the carry in of the 3rd stage. The top level

view of the counter is shown in Figure 7.

The critical paths in this circuit are orline which ORs all the bits of A (the andline is similar but
operates a bit faster), and the carry propagation from one stage to the next. The counter is broken up into
stages to take advantage of the fact that the orline is local to each of the three stages, and since values of A
are available immediately, these lines operate in parallel. There is some delay associated with driving the
control signal UP through all 28 bits (also, UP is the carry into the first stage). These two delays are syn-
chronized so that the control signal will be stable at about the same time as the orline into the last bit of the
first stage, which together generate the carry out of the first stage. From this point on, we only have to be
concemed about the delay of gencrating the carry out of the 2nd stage into the 3rd stage. In short, the logic

is constructed in a way which minimizes the number of gates in the carry path.

With respect to the VLSI methodology, our counter design has a number of advantages. First, the
layout is fairly rcgular with only two differcnt types of bitslices, using 3 of one type and 25 of the other.
Second, very simple 2-input and 3-input gates (standard cells) are used, which require much smaller arca

and switch faster than their higher fan-in equivalents. And finally, routing is significantly simpler becausce

AT A YR M AT m e e
\U.".‘- \J -f\f_-nf' .‘J‘I.J'_'vl' "-"\J‘_‘f_:" i

oA

»

SIS LR TS o8

the number of inputs and outputs of each bitslice is fairly constant, and because most of the inputs come

from the outputs of the immediately preceding bitslice.

PDL AND EXCEPTION HANDLING

The Push Down List (PDL) is 2 LIFO data structure which has 16 locations of temporary storage for
the pointers to the Prolog structures. It has two parts, PDL left (PDLI) and PDL right (PDLr). Each part is
32 bits wide. During unification of structures, each location contains a pointer 1o the next deeper nesting
level of the structure. Although we believe that it is highly unlikely that structures in Prolog programs arc
nested deeper than 16 levels (in our benchmarks, they are nested no more than 10 levels decp), we have
designed the architecture 1o detect and to handle the potential overflow. The PDL address calculation logic

(PDLACL) in Figurc 5 manages the PDL. The top level diagram of PDL is shown in Figure 8.

The PDLACL has two markers, called TOP and BOTTOM. As their names suggest, TOP and BOT-
TOM mark the top and the bottom of the PDL, respectively. Both markers are initialized to zero at the start
of the structure unification. During normal operation, a PDL push increments TOP (modulo 16) before
storing data into PDL at TOP, and a pop decrements TOP after the data from PDL at TOP has been read.
In our scheme, an overflow occurs when TOP and BOTTOM both point to the same place in PDL and there
is an attempt to write into it (a push operation). When this happens, a hardwired address to the overflow
handler routine in the control ROM is selected instead of the normal next microaddress. The overflow
handler routine increments the BOTTOM marker, moves one location (both PDLI and PDLr) from the PDL
at the BOTTOM out into the stack in the data space in memory, and jumps back into the normal unification
microcode. Upon exiting the handler routine, BOTTOM now points 10 one location above TOP. If a push
operation is done after an overflow without an intervening pop, another overflow will occur and BOTTOM

will again be incremented by one.

After an overflow has occurred, PDL pops will function normally as TOP will be decremented
(modulo 16) each time. When TOP is again equal to BOTTOM and a PDL read request is present, PDL
underflow signal becomes active and the address to the underflow handler will be selected as the next

microaddress. The underflow handicr restores one location of the PDL (both PDLI and PDLr) from the

stack, and decrements BOTTOM pointer.

T T U 2 S Y
P A
[SR

13 ",
24
There is a single bit D flip-fiop to remember that a previous overflow has occurred. This bit is set ’ ._u
when the first overflow occurs and remains set until all overflow data in stack has been restored into PDL, :
at which time it will be cleared by the underflow handler. :: ':-'?
\
Since we believe that overflow rarely occurs, the detection and handling mechanisms are designed 1o , _ 5
oy
require minimal additional hardware and microcode, and such that performance in normal situation would E‘;‘_ \ :
not be affected. In terms of additional hardware, the scheme presented above requires four latches, four 2- EE '.' f
input MUXSs, one D flip-flop, and about a dozen simple gates used in the comparison and decoding logic e
for the control signals from MIR. If the PDL does not overflow, all instructions operare at the same “ ""::
number of clock cycles as the TTL version wilboul any exception handling. The detection mechanism is : ‘::::E::.:“
transparent and requires no additional microstates.- In the event of an overflow or an underflow, approxi- }_. o
mately ten extra cycles are required for the exception handler 1o execute. :i.;.";:
o
'l
REGISTER DESIGN R
The data path contains five non-master/slave registers. These registers are used for storing the argu- E.:_!:'l
ments supplied by an instruction (ARG1 and ARG2_3), memory data regisier (MDR), result from ALU 2__.,:
(R), processor status register (PSW), and scraichpad (T1). Each register contains an input multiplexer .’»::
(MUX), wransparent latches, and output tri-state drivers. The input MUX is used to select input to the D
regisier from different buses. The output tri-state drivers are used as multiple read ports of the register. In _-:;:,E .
between, therc is the transparent latch which is used as a storage element. :_"_::,.:
To support the data structures u§cd in the PLM architecture, some registers provide functions that -r'}::‘\; ;
manipulatc the most significant 6 bits which include the tag bits and the CDR bit. For example, register Ti ‘-‘: '
is capable of clearing the most significant 6 bits or the most significant 4 bits, which corresponds to provid- -:
ing a short integer or clearing the primary tag and secondary tag bits. Another example is the MDR which ﬁ'_}
provides means to change the CDR bit and tag bits using data from the microinstruction. It is also one of ;:i"':'
the most complex blocks in the data path. The symbol of MDR is shown in Figure 9. The MDR block also ;:;::-{;
manipulatcs the tag bits and the cdr bit from other sources. The tag bits of MDR can be loaded from any ‘::’.
one of six buses. The cdr bit can be loaded from any one of cight places. The details of MDR in Figure 10 E\'\.
shows the various sources for the cdr bit and tags. The MDR block allows data 1o be wransferred to and 2

.
SR

¥

r- LW LUNR MU RN LN AKX 2O AR AN A WU WA W Y

14

from memory with appropriate tags. For example, the tag of MDR can be set to the tag of T1 register and

the cdr bit of MDR can be set to that of T register in one cycle.

All registers are written during phase 1 and read during phase 0. One way to do this is by doing an
AND operation on the clock phase and contro! signal from the microinstruction, and driving the clock
inputs of the 32 laiches using a huge buffer. This implementation introduces local clock skew because the
delay of driving 32 clock inputs is quite large. The second way redu~es the clock skew and it 1s done by
performing the AND operation in every bit. However, because of space considerations, we decided to use

the first approach.

STATIC BUS

To support multiple parallel transfers in the data path, we want to -2ad and write registers in the same
cycle. Since registers use transparent laiches, the output of registers have to be disabled after phase 0.
This will leave the buses in high impedance state after phase 0. The way we solve the problem is by intro-

ducing a static bus circuit to buses which are involved in the reading and writing of registers.

The static bus circuit consists of an inverter and a tri-state buffer. They are connected to form a latch
which will be enabled after phase 0 goes low. Together with registers, the static bus circuit acts as a master
slave flip-flop with the register as master and static bus as slave. Under this scheme, reading and writing to
registers in the same cycle is possible without introducing the space penalty of using master slave flip-flops

in the registers.

REGISTER GROUPS

The register groups in the chip are basically RAMs containing 16 words, each 32 bits long. There

-
.
..
e
Tl

arc four register groups each contwaining 16 registers. The first threc regisier groups have only one inpul

R
oro!

R
oy,

and one output. The first group is used for storing constants and the base addresses of uie Gve stacks

- ‘.}cf':"q
(4

P

shown in Figure 3. This would allow experimenting with different sizes for the stacks in the data space.

'.
[
LA

ll/

s7

&

The heap usually occupies a good parnt of the data space. The pushdown list (PDL) is supported by using

s

two register groups. The left and right panis are stored in the two groups. If a structure has more than 16

j levels of nesting then the the bottom entry will overflow to memory.

N AT A TR T AT T e T W
e e (A AN n'-.x"-‘d','-!‘_'-‘t'.l', A

S 20 a¥h oV 200 oAU 1000 (oWaT 00 o 0a T Lyt o B s AaY et 0% ¥ 0

i
@
:'_':\
15 N
i
N
PRE <N
P The fourth group is used for argument registers (eight in all) and state registers such as E, B, TR,
Heap backtrack pointer (HB), and continuation pointer (CP). The remaining three registers are used for
book-keeping. The argument registers support fast execution of procedure calls and also data communica-

i tion to the external environment. This register group has three inputs and two outputs. A multiplexer is
used W select an input. It has two read ports so that two different pointers, for example, stack and trail, can
be manipulated simultancously. A detailed diagram of this register group is shown in Figure 11. RAM
L cells in this register group have two read ports and one write port. Two separate address decoders are pro-
vided for the two read ports. One of them is also used for the write port. Instead of having only one source
for the address as in the cases of other RAM's, there are four ways the address for the register group can be
generated. Three ways are used 10 generate the address for the lower eight words and the fourth way is
used for addressing the upper eight words in the register group. The three ways use the lower three bits of

Argl, Arg2, and three address bits from the microinstruction. The fourth way uses the same three address

bits from the microinstruction. The four ways of generating addresses are couwrolied by two bits from the
microinstruction. Each of the two read ports has its own addressing bits supplied by the microinstruction.
So, they are independent of each other, This register group is one of the important blocks since it is used

often.

A macrocell has been designed for the register groups with a worst case read time of 30 ns. The
implementation is similar to that of the non-master/slave registers except that the transparent laiches are
replaced by an array of 1-bit RAM cells. The read (write) enable control signal, an output of the decode
logic, and phase 0 (phase 1) of the clock are put through an AND gate as in the case of registers. The
storage part of the macro ccll is organized as an array of 32 rows and 16 columns with 1-bit static RAM
cells. Eight RAM cells in each row are connecied to a bit line bus. Each bit line bus is connected to a huge
tristate buffer that drives an output bus. To reduce the read time, p-devices are used to precharge the bil
line buscs. The transistors in the 1-bit RAM cell are sized so that they can pull down the bit line bus in less

than 30 ns and the p-device can pullup the bus in fess than 50 ns,

The current access time for the register groups is less than 30 ns (worst case) with the exception of

| the dual poned register group which is about 35 ns (worst case). Since the dual ported register group is not

[
[f“l’.n‘ o

Pl

in the critical path, the extra dclay does not affcct the cycle time.

&7
' >‘c,‘- 5,

-
.t
I

,
eV PR ATATAT A T AD T\ e, it SR PP AL

S gat g

r

Mﬁ* N N e o o A T T W W S R T T AP 4 A N MR T s e ,
" \ N e s et AR ENTAC IR RN AN N Catapepe
\hh‘mmm ‘.‘hs W G LA R DG N A A AN NI R ok

"‘.i' 4,0 9,9 g8 WIS S AN TR SRR 4 9g% 9% ot MU S IO PO U A tut e bt 02t 0" Ha® . Be? B oyt gav
-

~ W W - i

16

COLLISION DETECTION

The data space is divided into four parts to contain global heap, heap, stack, and trail. The starting
addresses for the four paris are stored in the constant RAM block of the data path. As data items are
entered into the global heap it is possible 10 exceed the space allocated and go into the heap area. A similar
kind of situation can happen between heap and stack, and stack and trail. These are called collisions and

they have 10 be detected and reported to the host system,

To detect collisions in paralle! with the data transfers in the data path, parallel hardware is included
in the data path. The top 15 bits of H2, H, and S are compared with the base values for heap, stack, and TR
respectively. If the two are identical then there is a collision and a signal is generated and stored in the pro-
gram status word (PSW). The comparison is done on 15 bits instead of 28 bits since not enough time is
available during register transfers in phase 1. Note that since we are not comparing 28-bit addresses the

collisions are detected at the page level, where a page is 8K words in this context.

4. MICROCONTROL DESIGN

The microcontrol comprises a microsequencer and a status unit. The microsequencer supplies the
address of the next microinstruction to be executed. A block diagram of it is shown in Figure 12. To keep
the design simple it supports just one level of microsubroutine and one level of interrupt. Two 9-bit regis-
ters, microreturn pointer (urp) and control microreturn pointer {curp) are included in it to store return
addresses. Fast microbranching is supported by partitioning the ROM into four pages and using logic 1o
modify the two most significant bits (page bits) of the next microaddress seed. The micro page select
(upage_selcct) logic modifics the page bits according to the current status and directives from the microin-
struction.

The next microaddress is selected from different sources according to the current status and dirce-
tives from the microinstruction in the micro program counter select (uPCselect) circuit. The potential
sources for the next microaddress are: modified next address seed, new opcode, arg) register, subroutine

rom, microreturn register (urp), and control microreturn regisicr (curp).

Both upage_sclect and uPCselect circuits have been designed using the tree-height reduction method

proposcd by Kuck [8]. Although the tradeoffs involved (e.g. differcnt basic cells have different fan-out

S
~

:

»

v s

] e
i gy

Paeee e

5 %

PP -

BN R A
.
.

¥

T

N

LA e g R

pRRET

R

54
)

» \‘,Y l\)-.J-. '’ -,

4
T

ror v

“r

“nr “w
L

Y
5

e
5

« S

[y

A

L ol § -

R . ‘.V.'l

Dot

PN ENEN

NS

-

54 &

'x"“'?.’ TOLRPY gl ':«."

,\1

WA

L s I

B 5 K

e]e

oA

b

A L x

a3

”

¥

,

4

17

capacity, there might be 100 many cells needed, etc.) are 0o complicated to obtain the optimal circuit, we

used approximate circuit breakdowns and obtained good performance.

Since only the most significant two bits (tag bits) of the seed need 10 be modified by the upage_select
! circuit, there are four possible ways of accomplishing the modification. We have a choice of generating the
encoded version or decoded version (i.e. either have a two bit output or a four bit output) of the page
number. The two bit version is heavily favored since it needs fewer component counts. It also runs faster
than the four bit version since it is necessary 10 change the output of the four bit version back to the two
page bits.

Optimizing the design of the uPCselect presented some challenges. The implementation produces a
two bit encoded signals and then decodes them to four control signals. The only consideration used in the
optimization is the reduced component count, It is believed that fewer components indeed would lead to
faster circuits, but it is not clear whcther the time saved would be more than the additional decoding time

needed.

We have designed a uPCsclect circuit with a delay of 35 ns. The selected next microaddress is then
supplied to the external_mux block in Figure 12. It is also stored in the control microreturn pointer (curp)

register. If no interrupts and exceptions are present then the address supplied by the uPCselect logic is sent

to the ROM lawch. This completes the operation of the microsequencer and the total time available 1o the
microsequencer is 42 ns. If exceptions occur then the address of the exception handler routine is supplied
to the ROM laich. If an external interrupt occurs, then the address supplied along with the interrupt signal
is supplied to the ROM laich. The top level diagram of the microsequencer and the tree circuits of
upage_select and uPCselect are shown in Appendix 1. We implemented the two circuits using PLAs and

random logic and selected the latter because of its speed.

STATUS

The status unit contains the current state of the PLM. The state information includes condition codes,
tag bits of MDR, T, T1, cdr bit of MDR, and 1ags of selected argument registers. The condition codes arc
generated during the previous cycle. They are latched into the status unit during phase 0. The status unit

delivers the state information quickly 1o the microsequencer. The 18 bits of the status unit are stored in

AR A I U U U S N - . P .
}ﬂmﬂ.f‘f. NN NI NI NI e —'-A.'f L ;'.‘-_. TR -':'_.'-‘\'.".’.-;f;‘- .A-.:__,:'...-_.--'.'\'.;J.-_.:--.'.-'.;-":~'._

A 40t te At A b\l -a b tal P A A G o el St ol Sa0 A AW
o

‘,‘.’.J

ot

ey

Pl

L)
"" T T 2

-~

)

[]
P
L3

s S B
‘f‘.fl-’ Is
_.}I. »

A NN
P
i
e

PN
S RN
AR,

e
~X ®

e
Ay
b 2N !

L] i
.'1{':‘
P

»

.-_\
P

S
L3

RTATAILFLTR

T

FI'NJMHFWJ‘.'V.‘"I'J‘I & R T T RN T P T TP T e oY Lt ea' it

18

LSSD [6] registers so that the chip can be tested by initializing the chip to a known state. The unit contains
a shadow register block and an LSSD block. The shadow register block stores the two most significant bits
(1ag bits) of the registers AX0 - AX7 in the the dual ponted register block of the data path. The shadow
register block is written into during phase 1 when a write 1o AX0 - AX7 is performed in the the dual poried
register. The conients of shadow are available to the microsequencer within 10 ns from the time phase 0

goes high. This fast delivery of state information is necded to meet the microsequencer iming constaints.

5. ROM, MIR, and INSTREN DESIGN
ROM

One of our goals is to design the ROM with a read access time of 40 ns. The NCR design team sup-
plied the ROM as a macrocell. The circuit diagram of the ROM and the timing diagram are shown in Fig-
ures 13 and 14. The ROM is organized as a NOR array with 128 rows and 640 columns. The 640 columns
are divided into 160 groups with 4 columns in each group corresponding 1o the four pages. The least
significant seven bits of the ROM address specify the row 10 be read. The most significant two bits specify
the column. The worst case read time depends on the output capacitance on the 7 input NAND gate. This

capacitance increases as the number of zeros stored in a row.

The ROM uses a precharge scheme to reduce the read time. The reading takes place during phase 1
and the values of the 160 bits are supplied 1o a latch. During phase O the value in the latch is sent to the
microinstruction register (MiR). The values of eight bits at the end of a word in the latch are also supplied

to output pad drivers for communicating them to the cacheboard.

MICROCODE GENERATION

Most of the microcode for the chip is gencrated from the microarchitecture simulator using pro-
grams. The microcode is stored in the ROM. Almost 300 locations in the ROM are used 0 implement the
PLM instructions. The state diagrams for the instructions are included in Appendix 1. The remaining 212
locations are used for builtin functions, initialization, and debugging. The microinstructions are 160 bits
long in the chip compared to 144 in the TTL version of PLM. This is because the number of buses in the

chip and the implementation of PDL are diffcrent from the TTL version, There are also additional blocks in

- ™ - L - [] -
WAL N Y N 1NN

AT A

[0 SR YL L SR T

N O I T O T R T VY L YT T T R Sallb kit el

N

v
_n.’-)‘)

L O o | L

]
A
', "'..‘-. X

>
A

;- N

I
- PEErE
(@ TSR

v e Ll
4 Ak,

51

J '..'.'.,'.v 'f‘f
R Y r‘| ..{.-

v .
IR

L
2
P

4

5y
s @

';s‘ oy

Yo 5
<@ o

*

'.‘..;:"’-' -. . ’-. .n']
A

ANERY N

‘f"f.'f..{ ----- T A e N e -‘- UL P 1_,-'.-1:'_ ‘).1_- chc
Sty e I i

A W CA AN NI N 20 R o= aua- < gatosnt pav gae " Attt
- L Vel 4 \ LGS, Ad Sl A4 W AN A R C W O W (W W W N W R w U S WL W Y R W

19

the chip 1o handle heap/stack and stack/trail collisions.

To generate microcode, programs are writen in "AWK" and "C". One program determines the
buses o be used for each microstate so that bus conflicts would not arise. A second set of programs are
wrinten 10 generate valucs for the fields of a microinstruction corresponding to the data transfer part of the

microstate flow chart. Another program generates the ROM address for the next microinstruction from the

next state part of the flow chart.

MIR DESIGN

The MIR contains the current microinstruction. It is implemented as an LSSD [6] register. The con-
tents of MIR are supplicd o the data path and microsequencer for the entire cycle if the chip is not in test
modc Since each bit in MIR has 1o drive logic in 32 bitslices. buffers are needed to reduce the delay. The
buffers on MIRD block of Figure 2 are designed so that within 8 ns of phase 0 going high the control point
values will be available to the farthest bitslice in the data path. The chip can be put in the test mode by
asserting the TEST1 pin in Figure 15. In the test mode the MIR can be loaded with data on the SHIFTINI
pin by shifting it using the SHIFTA clock. Any microinstruction can be loaded into the MTR and executed.

The results can be observed by reading them using the MEMDATBUS.

INSTREN DESIGN

The PLM instructions usually take several cycles o execute. It is possible to prefewch the next
instruction for most of the PLM instructions o avoid delays in starting the next instruction. The cycle at
which prefeich can be performed is indicated by the microbits PREFI and PREF2. The PREF] bit when
asserted indicates that the next PLM instructions opcode and first argument can be feiched from the cache-
board. The INSTREN pin of the chip in Figure 15 is used to communicate the prefeich signal to the cache-
board. The cacheboard supplies the instruction and a 32-bit argument within 10ns from receiving
INSTREN. The PREF?2 bit when asserted indicates that the second and third arguments can be fewched dur-
ing the cycle if the opcode of the next instruction indicates that arguments two and three are needed. Three
bits (bits 4, 5, and 6) of the 8-bit opcode indicate the number of arguments and the size of an instruction in

bytes. The INSTREN signal is then gencratcd and communicated to cacheboard. The data supplicd by the

LY - \

% %
»

o
PR

5
L

LY

Pl 20
(.
h §
s".""."_

“»

] »
D . e)
} b 5.'

w, s
sl
l-—-{‘"

i
>
fy

0

" A
N . L

b

AL ELL A
NI
445

LI
o »
Ne -
v v

'
l"f 2

-
W

NAAAR
S s
P AN

Ié. .

5y
s

b] 5d".rl Pl
Al AL
o A R AP

A

'."r.lli.'l
£4 27

Y "1"-

L]

%S4 oS

.
e

'@

‘e ‘v
e
PR s

LN

L2
1
2?/1

-))\r‘:'a‘v'&'i
o2
.

o

L ".'- "' l'l“J

2 a
.' l. " '. H
RAA

"

[= S e A A A A R T R A W N N W O OO R N VT Y IV LY s AR RN PSSRl A A A I A S Al
~- . = DIaC I N A A ARt b FRC

20

cacheboard in response to INSTREN is stored in ARG2_3 block of Figure S.

6. DESIGN VERIFICATION

The verification of the design has been the most complex and time consuming activity. We did func-
tional and uming simulation 1o verify the design. The complexity of the design prohibited us from starting
the functional simulation at the chip level. The use of master/slave registers, latches, two phase clock, and a

complex next microaddress selection scheme based on tags and condition code required us to start the um-

2@ T

ing simulation at the block level. AT
o
FUNCTIONAL SIMULATION e
e
A hierarchical methodology is used in the functional simulation. The individual blocks of the chip; ®
units such as data path, sequencer, MIR, and status; and the entire chip formed the three levels of the _.:
hierarchy. EIEE
oL
We used the QUICKSIM program of IDEA station for simulation. Each block in the data path and ®
AN
microsequencer is functionally simulated by applying all possible values for the control inputs coming *:::_:--
from MIR. The functional simulation of the ALU is carried out using two programs. Ali the functions of ri:s
the ALU are exercised by using a given operand for the A and B inputs of the ALU in the first program. :;-
The add and subtract operations of the ALU are performed for a set of patterns by the second program. All .::r.:_‘
functions of the remaining blocks have been exercised by a select set of input data. :{\-:.‘
S
Following the functional simulation of individual blocks, entire units in Figure 4 are simulatcd. :.:'
Exhausuve simulation is not possible because of the large number of inputs. For example, the microse- ;::::::_L
quencer has 18 inputs from the status unit and its operation is dependent on these inputs. But it is not possi- -'E"?
ble 10 make a simulation run for cach combination of values. So, programs have been devised to reduce :::;:::_"
thc number of simulation runs. Programs have also been written to check the results of the simulation runs. ":"\
Simulating the data path as an unit presented a number of challenges because of the diversity of the blocks. -:
We first identified 14 classes of transfers that can take place in the data path based on the regisier transfers 'E

in the microcode. For each of these classes we used a set of dawa values on the input buses and observed

the outputs.

.l A - - - -
o et P E N AT AT RN S LIPS A o N vttt -
" el A, LRI P g R A A S o T i L L R . R I S -~ - . N
e PN P LR A S AR AN RN s A SR T Y S U SAASE D ERE LS SERES £ CR EN AN

rwww WY UW VW LAWY LWV U \.'Wt.m\'ﬂ.'n'sxV.vﬁ“ﬁWWWmWYﬂW"JWIH~PWx‘JVW a8 100" 0,% ¢!
i

21 W

Functional simulation of the entire chip has been done using benchmark programs. The simulation
and verification process used the programs shown in Figure 16. The ROM of the chip is first loaded with
the microcode. The execution of benchmark programs is simulated by reading the sequence of microin-
structions from the ROM for each PLM instruction and supplying the control points to the other units
within the chip. Inputs to the chip are supplied on the MEMDATBUS and outputs are observad on the
MARBUS and MEMDATBUS. For each cycle the contents of the key registers and the next microaddress

are saved. This state information is compared with the output of the microarchitecture simulator for each

cycle when it is executing the same set of programs, TR
At
AN
The set of benchmarks used to verify the design is shown in Appendix 1. An example of a set of '.::‘5.:"
‘e
L0
stimulants supplied to the QUICKSIM and the output from it are also shown in Appendix 1, ::. ‘;:
o
NI
TIMING NN
C'_:‘x"",::
The need for reading and updating a register in the same cycle dictated a two phase clocking scheme. }_\.-
For example, data can be read from T and the register group, CONSTRAM, that contains STACKbase dur- qr: :
2L,
Y
ing phase0. During phasel the add operation can be pcrformed in the ALU and the result stored in T. We :.‘.'%
S Ing
used delayed branching and a pipeline register for the microinstruction (MIR) so that . . data path and the :'sﬁ
)
microsequencer can operate in paraliel. o o
NG
TN
To understand the timing issucs in all the blocks of the data path, 14 different classes of data " X
NN
transfers are identificd in the microarchitecture. For each of the 14 classes timing diagrams are drawn ,L::
--,i .
using the two phase nonoverlapping clock. The registers and register files are read during phase 0 and ..o
NS :'.
written into during Phasc 1. The ALU is combinational and it is assumed that it will supply the result 10 ::-;::-{-§
\.'.'\'.,‘ A
ns before phase 1 goes low. In the case of master/slave registers, the master is written into during phase 1. :':"f
\‘.\":-:
The transfer from master to slave and reading the slave occurs during phase 0. A set of timing diagrams is 7 . :
PR
. SR
included in Appendix 1. This set is useful for cache board designers and also interfacing the chip 1o stan- o f\";:
-l'.:'-'_ 4
dard buses. e
.(\'_‘:-gil
'-‘.".':\.I‘I
@®
TIMING SIMULATION f}-
z
e
\"_ .
NN
I‘ Ya. ? a Tt '. -" LR AT S s S LS . > L e o - I S - .)\-'.‘-'\'
B T 3 e A T NN

r. LES RN AR 08 aVE oVF (V5 oV AU N0 QURT IR Bt Ta T 0t T fat fa* o

22

The timing simulation has been done using NODEDELAY, PATHDELAY, and QUICKSIM pro-
grams with estimated capacitances o determine the delay through the blocks. The timing information is
used in redesigning the blocks to achieve the 100ns cycle time. The timing simulation programs are run for
each of the blocks in the data path and microsequencer to calculate the delay in each block. The blocks
have been redesigned by adding bigger drivers, or changing the circuits to reduce the delay and to meet the
uming constraints. For example, the ALU initially took 70 ns to do ADD operation since we used four
input gates. We redesigned the ALU by using 2 input NAND and NOR gates, OR-AND-INVERT(OAI
121) gate, and AND-OR-INVERT (AOI21) gate. The SPICE run on the ALU showed a worst case delay

of 37 ns.

The results obtained from the timing simulation on individual blocks are used to determine the time
delay for each of the 14 classes of data transfers in the data path. Whenever the calculated time delay

exceeded the specificd value the blocks have been redesigned o meet the specifications.

The timing simulation on the blocks of the first version of the microsequencer resulted in a complete

redesign since the estimated delay exceeded the 42 ns constraint by almost 50%. Another unit of the chip

o/

[]

b

that had 10 be complelely redesigned to satisfy timing requirement was the MIR. The LSSD registers of the

X
8’
Lo

P
5

CAr
Yols

..{
)
kA

MIR have been redesigned to reduce the time delay.

7

7. PHYSICAL LEVEL DESIGN

The area of the chip, if it could be routed conventionally, has been estimated at nearly 1.8 cm on a

side, and our cycle time target of 100 ns would be missed by at least 50%. Rather than accepting this poor

result, NCR developed a new approach to implement the physical design. The goal is to develop a place-
ment and routing methodology that would enable us to build very complex structured designs (ones with
more than 20,000 gates) with sufficient density to achieve efficient manufacturability and high perfor-

mance.

The physical level design work for the chip is done by the Advanced Development group at NCR-
Microelectronics in Fi. Collins, Co. NCR undertook this project with the desire to explore the problems
associated with physical design of next-gencration semicustom products. The PLM architecture was espe-

cially attraclive, because the design requirements of the chip anticipated those of a growing class of

INJ '-v"v‘,‘f.f',-f..l‘./xf\r\r\-'\f-. AATA LIRS X T E TR N

Mo e M NN e e N
'CB.{'\-‘:'.‘:\'A’A_(-_‘L(L{Lf)_' RN

AL

N ATR

S020a e TO SR B B AV G RRAL Pt Vel g W Al o & A i AR DA A A i £, ¢ 4 2"y aNad -‘\'-i-“n“-u-‘-4.‘."-'-1-~ Pl bt bl gyt JU(.’('.R'U“V'
S
g

23

advanced processors. It was, nonetheless, beyond the capabilities of current commercial semicustom
design systems. Implementation of the PLM architecture has provided an opportunity to explore hierarchi-

cal, cell based design representations for complex, structured logic.

The concept of cell based design for VLSI is itself a form of hierarchical representation. Cells or

blocks (both parameterizable and fixed) are designed with low level elements and transistors. Then, with '.... :
some systems, the chip design can be based only on a behavioral abstraction 1o the cell level. Currently, il &
however, the most common approach to physical layout is to extract a single netlist from a design at the & '
cell level, without any further hierarchy. This so-called "flat” nedist is used by an automatic placement and '?':::.J:

s

routing program to produce a physical layout.

I
77

If conventional routing techniques are used to route a highly structured architecture like PLM, one min
finds cells associated with a given block distributed throughout the layout. A skilled designer, aware of the ,',’.': '.'
RO
structure of the logic knows, for example, that data paths can be bit sliced; he can place the logic associated j':;:.:
\“:-.-%’.
with a given bit very compacily, and efficiently for performance. However, a "flat” router has no apriori g',.\':n-
o
knowledge which permits such efficiencies. Scatering of highly related logic increases the wire length T
between cells, and in tum increases the die size and the path delays of the final chip. These factors can X
lead 1o very unsatisfactory results. It is possible with most tools to "seed”, or specify the location of cells, "E':':‘
to improve interconnection during automatic routing. This is, first of all, a very tedious procedure, but in ;.;_!?_
‘\"n::\
addition, it has been our experience that seeding a placement is generally inefficient, and increases the dic ;';_‘:.::
0 * '
AN
size over an unseeded placement. :._"'
-.‘-I- -l~
e
TOPHER (TwO Phase HiErarchical Routing) o 'f.:
L
!
A hierarchical physical design procedure has been developed to address the problems and goals ?'.: ‘
b' {\
identified above. It was implemented for the chip as an extension of NCR’s commercial cell based design ROy
system (VISYS), and progressed in the following way. The design was physically partitioned into blocks 3-::-_‘;
e
corresponding 1o the logical blocks shown in Figure 4. On first pass routing, the bit slices were routed r::;: \
L
inside each block, so that they would align with (pitch match) adjoining blocks. Design verification was -'_::-,,\.f
done on the individual blocks, which are fairly manageable in size, allowing for easy detection of layout).._
s -
problems. The blocks werc then wired together in a second pass through the router, afier the chip pad cclls .',;..-.'.r"
NN
é:,.
i
M-’\
At
o

N e ,
N AT AT NI AT P T

NN NN LA LA Ny
’mf_s.fs.ﬁa.ﬂ_}' s e M

[t B B LV N Bat VeV Ve VoV W,V WaV oF a¥ 4.7 8§27 ¢

)
24
’ were added to the layout. The finished layout was then submiticd to a full chip level design verification
cycle very similar to that used for a conventionally placed and routed ASIC design. The two phase
hierarchical routing is called TOPHER. An important aspect of TOPHER has to do with the use of the
) metal interconnect layers, and the layers on which ports are defined. NCR's commercial cell library uses 2
levels of metal for interconnect and power routing; metal-2 is routed vertically over the cells for reduced
wire-to-cell ratio, and elimination or reduction of feed-through cells. Since metal-2 is largely free of arca
) penalty, it is imporiant 10 maximize metal-2 usage. Consequently, the commercial cell library has all port
connections on metal-2, using metal-1 as the primary horizontal routing layer and for power and ground
wiring. Mectal-1, therefore, runs parallel to cell rows.
b If this approach is used in the first pass of TOPHER routing for a block, a significant number of

metal-2 wiring tracks would be consumed just by the input and output pins of the cells. These tracks would
then be unavailable during the second pass of routing. To reduce the number of blocked tracks, we
modificd the cell library 1o have all inputs and outputs on the polysilicon level, instead of on metal-2. Out-
puts on polysilicon are, however, undesirable because of the high resistance associated with this material.

It is most advantageous therefore, for this first-pass routing problem, 10 have input pins on the polysilicon

T ey — — —— -

layer, horizontal connections and power/ground on metal-1, and output pins on metal-2. Since the router

) supported only two routing levels, outputs had to be initially routed on the polysilicon layer, so all of the
pins could be defined on only two levels (poly and metal 1). An NCR proprictary post-layout processing
tool is used to automatically convert all polysilicon connected to output ports back to the metal-2 layer.
; This eliminated resistance at the beginning of a net, and provided significantly better performance than
would a library actually designed with poly outputs. S;,E';
o
| CELL ROUTING N
The process for cell routing begins with identification of the critical nets, the block level port loca- 9._
tions, and the number of cell rows to be used. In order for each bit slice in a block to align to adjacent bit *EE
slices throughout the data path, the cells are manually placed. In this way, cells are positioned so that block "-:'f:
~

level port connections would be approximately aligned 10 the predefined bus order in a bit slice. Block
level port connections arc the ports (o be wired to in the second pass routing. They are either input or out-

put ports *~ standard cells. The tedious manual procedure is duc to the lack of schematic-capture-level

" .f s

YN AL "AACS

it

$ Ny .-\. -* ‘1. &)

- - A 1 - “ - N
AR ,.‘_-_'.-_.-‘.-‘.- R T I N R R T A0 1N AN N
- -~ aVatatan L ot e

[N R RS R T W T AT OO MO W T,

!
.

L ;[\-
e

; :
o

seeding capability in the router. A recent version of the router greatly automates this step, but it was una- ™

VR AN VIW LR "»‘V'-.’V\.‘W'.‘\‘J,
ey
LY
LY

vailable at the ime the blocks were routed for the chip.

{
|
F BLOCK ROUTING

After cell placement, block control lines and other critical nets are identified and wired first, followed
by the automatic routing of the remaining nets. By splitting the wiring into two groups, the critical nets
could be more efficiently wired using an interactive mode of the router if desired, thereby guiding the route
to the highest performance implementation possible. Upon completion of a block route, poly paths con-
nected 1o output ports are converted o the metal-2 layer, as described earlier. The result is that the blocks

are wired with three levels of interconnect: poly, metal 1 and metal 2.

Next, the blocks are loaded on a layout workstation. The graphics manipulation programs and an
interactive editor are used to add block level port definition structures and metal-2 power buses. Three sets

of power buses are placed in each block to provide‘an adequate power distribution network. The buses are ;

placed next to bit 0, between bdits 15 and 16, and between bit 31 and the control logic. At this time nets that

548
)
&

did not routc 10 completion are also finished and the blocks are now ready for verification.

s
..
3

Wi

In addition 10 the blocks in the data path of the chip, there are additional functional blocks associated

RS
o

with status and microsequencer units. These blocks are automatically placed and routed after defining the

5 ey
PN

port locations. These port locations are selected 1o minimize excessive wiring in the global routing pass.

o

X g _v_
& &
’

«

| Since many inputs 10 these blocks are from external pads, the ports are also placed to maich the desired

fr
L5y
07,

& pin-out of the chip. The only other constraint placed on the router for these modules is their width which

should not exceed that of the data path.

s e _a a
o’
&

n,

-
LR A,

ANALYSIS

Ll e B Y
Rt
«

’ For each block, post layout timing analysis and network verification are performed by a set of NCR
proprictary sofiware 100ls known collectively as VITA. Additonal process design rule and electrical rule
checking is also performed to assure that the layout topology is correct. The VITA tool Interconnect
g Analysis (I1A) is uscd to extract resistance and capacitance values that are back annotated into the design
files so that functional simulation can be bascd on real valves. For the entire chip, only those pins con-
nected 1o block level ports still used estimated capacitance values afier this back annotation.
b :

i " L] e ™ b - L] » - - ™ P o wm W e m e m . . B
L DY N N N A T N ST R Ty

The network comparison tool, NETCMP, is used to verify that the layout matches the netlist at the
cell level. NETCMP does not do a transistor-by-transistor check, but it verifies the accuracy of connectivity
between cells. The run time is considerably faster than the other, more detailed, check but gives compar-
able results if the cells are known to be correct. The design rule checks (DRC) and electrical rules checks
(ERC) are run next, followed by a transistor level check between layout and netlist (LVS). This latier usu-
ally runs without reporting errors if any discrepancies found by the VITA programs have been fixed

correctly.

GLOBAL ROUTING

The global routing of the chip is done by the second pass of TOPHER. The blocks of the data path,
status, and microsequencer are wired together using the two metal layers. Power and ground routing is
done prior w signal routing. As mentioned earlier, the bit slices for the chip are laid out to align when
blocks are placed next to each other in the second pass. These bit slices are then wired together using
metal-2. Control lines in this design run orthogonally to the data buses, and are in metal-1. Miscellaneous

signals and pad connections are wired in either metal layer, in order to complete the layout.

8. CONCLUSION

The semicustom approach 10 logic design and TOPHER approach 10 physical layout has resulied in a
chip design with 40,000 equivalent gates, and eleven 32-bit buses, on a die under 1 cm per side (approxi-
mately 130,000 square mils) having a simulatcd cycle time under 100 ns. A layout of the chip without glo-
bal routing is shown in Figure 17. Note that almost 70% of the area is used up by the data path, and onl:
25% by the ROM and the microcontrol. The logic design, simulation, and verification effort involved the
equivalent of five engineers working for 2 years. The physical design process involved two engineers. onc
working half time, for 1.4 years. We accomplished this using a conventional two-level router, and the chip

is constructed in a manner compatible with existing design verification tools.

ACKNOWLEDGEMENT

® T e Ve,

LRSI
St -_Y.\ et ATt T

M N e e L T et L4 NCINCEN R
i N I N A

L"
L

]
»

v
s

.
’ .
g

L4

« =

»
)
~

%

4. :?‘g'éw

b

v T

h- 4 4

T R T R T A A T LT T R T AT T T N T T S T L T LT T O

27

The physical level design was done by Maurice Moll of NCR Fort Collins. We appreciate his efforts
and those of Dan Ellsworth at NCR Fort Collins. We are thankful 1o Tep Dobry, the designer of the TTL
version of the PLM, for explaining the microarchitecture and answering our questions related to the archi-
tecture and the microcode. We are thankful to Chien Chen for designing the ALU, Allen Wei for writing
programs to check bus conflicts in microcode, Jim Testa for designing parts of the microsequencer and
generaling microcode from flow charts, Harold Crafts of NCR for developing the cell library, and Tara
Weber for microcode generation programs. The comments and suggestions provided by the members of the
Aquarius projeci are also appreciated.

This work is partially funded by Defense Advance Research Projects Agency (DOD) and monitored

by Naval Electronics Sysiem Command under contract No. N00039-84-C-0089, NCR Corporation, Day-

ton, Ohio, and National Science Foundation. Equipment and other support for the project has been pro-

vided by DEC, NCR, Apollo, ESL, and Xenologic.

AR R N O R RO YRy RSO TR,

R T I T,
IR AP I AP

LY GO

Y Y 3
Foll
%Y

w5

b

[4

NS

~
P
A

PEIEER Y

af:z
/3

S
%

SN
E’?’: AL

B AR MW R R W e s wp
Ry CLeIL N
'.{‘-{“j.b,l,ﬁ - [

~ _L‘, 0
ALY

3

\‘,‘h' N]
" \l

e

>

.~ A e Cu o LW

11.

28

REFERENCES
1. NCR Corporation, NCR/32 General Information. 1983.
2. A. M. Despain, *‘Lecture Notes, CS 257,"" CS Division, UC Berkeley, (Fall 1984).
3. A. M. Despain, *‘Notes on Computer Architecture for High Performance,”” New Computer Archiicc-
ture, Academic Press, (1984).
{ 4. T.Dobry, Y. Pau, and A. M. Despain, ‘‘Design Decisions Influencing the Microarchitecture For A
Prolog Machine,”’ Proceedings of the MICRO 17, (October 1984).
5. T.Dobry, A. M. Despain, and Y. N. Pa, ‘‘Performance Studies of a Prolog Machine Architecture,”’
{ Proceedings of the 12th Intl. Symposium on Comp. Arch., (June 1985).
6. E. B. Eichelberger and T. W. Williams, *‘A Logic Design Suructure for LST Testability,”" Proceed-
ings of the Design Automation Conference, pp 462 - 468, (1977).
| 7. B.Fagin, Y. Pait, V. P. Srini, and A. M. Despain, ““Compiling Profog Into Microcode: A Case Study
Using the NCR/32-000,”’ Proceedings of the MICRQ 18, (December 1985).
8. D. Kuck, *‘The Structure of Computers and Computations, Vol. 1, Jokn Wiley Press, New York,
(1978).
9. R.E. Ladner and M. J. Fischer, *‘Parallel Prefix Computation,”” Journal of ACM, Vol. 27, No. 4, pp

831 - 838., (October 1980).
E. Tick and D. H. D. Warren, Towards a Pipelined Prolog Processor, SR] International, Menlo Park,

CA (August 1983). Technical Report.

D. H. D. Warren, An Abstract Prolog Instruction Set, SRI Intemational, Menlo Park CA (1983).

Teclnical Report.

siashianhiatiienti il ARt A A S bl B T LR Lo R G b PR oL 01 0¥ 82 M 1 g W 00, ANy 148 g 0y Sk abi™ g’ o ta¥ la™ AV Ga% a0 Aob Bab B0 A3 '00d"0.0 00" 820" K0 "pad Rad et B 1 W
NS

A,
u)'\.".

5

-
L.

-
at

ot R
A ".'FSQ
ZR L x

L

o
-

2
2 d

S
RS

P
L
ARy

Tt
h

b4
L

::::.

”
’l

r" bt
'l
o

3
l..

RNy
Ly
2EPLNL

Ot
4 n‘.
e

x
AR

.,,_;
LY
Pabld
s

. ::.

b

»
.

-

I m,m.m:\nr\nm"ﬂMMMMFHWWVMVMWKW““VMI.“V

TSI O
’ %
. ®
2
Table 1 VLSI-PLM Instruction Set Summary j“,'.“_g
e
) . . ; N,
Instructions Cycles Max. Number Dynamic Instruction ¥ RS
' of Transfers Frequency (%) '. ’
j try_me_else 21 7 3.89 ;:ﬁ-’.
/ try 17 7 1.12 il
retry_me_else 3 7 2.63 Coln
r retry 3 7 0.62 E;;'_Q
trust_me_else 5 6 2.08 B
| trust 5 6 0.59 "'-r",
cut 8 4 224 _::-.:
cutd 147*1 5 0.04 o
fail 19+3*] 4 0.13 :-F::v:i
switch_on_term 5+d 3 546 ""."
swilch_on_structure 11+d+4*1 4 0.36 37
swilch_on_constant 10+d+4%1 3 0.14 :,:.2
allocale 6 6 437 A
F call 1 4 3.08 NN
proceed 3 4 251 et
execute 1 1 042
deallocate 5 4 3.19
escape variable 6 348
get_list 3+i+d) 5.15
get_structure 4+1+d h) 4.69
get_variable S+u+d 6 4.82
_get_constant 1+u+d 5 1.90
get_value S+u+d 4 249
) _pet_nil 2+u+d 3 0.91
put_value 4 5 9.37
put_constant 2 3 2.17
put_variable 4 9 3.34
put_unsafe_value 10+d 5 2.31
put_list 3 3 0.67
,’ put_structure 3 3 0.26
_put_nil 2 3 0.03 .9
unify_variable 6+c+d 6 9.01 ::f:
unify_cdr 5 S 4.07 Sl
unify_value 9+2*d+c+u 3 4.79 s
' unify_nil d+d+y 4 439 :::.-:::
unify_constant 4+d+c4u 3 1.27 ‘@
unify_void 2+8*1 S 2.04
add 3 6 0.1
sub 4 4 042
mult 85+number of oncs 7 0.01
in the muluplicr
and 3 5 0.51
or 3 5 0.0
eor 3 5 0.0

A R o e A N VA TG NIRRT

Y

oA L A T S e G N R N

Y

w .
AR

L S Ve

-iA\. ot '

e T L

B T N N N L R R L T T T T oo, BICA RN St yvh S0 gt gtapiia ™ gty o - g, et s
d S A - d L S NI A P . cul N

n

jump] 1 0.0
jumpxn 1 1 0.0
jle 5 4 0.0
jit 5 4 0.0
| jeq 5 4 0.25
memread 4 5 0
memwrite 3 5 0
coderead 4 3 0
codewrite 3 3 0
loadn 2 2 0
dereference 2+3*links 4 0.95
reset 5 5 0
noop 1 1 0
halt 1 0 0
boot 22 5 0

-

g Dynamic Instruction Frequency is obtained by executing the Big Benchmark Set and averaging the
results.

where:
¢ - time for a decdr operation (= 2).
d - time for a dereference operation (= 5).
t - tme for a trail operation (= 4).
u - time for a unify operation (= 3 + optional trail).
1 - the number of loop iterations (>= 1).

e
b

N,
LY
_.:: \

J‘l

A% %

[N

TIPS R A S e e R e S R T Ty L LN . s, " cal e e .
W Y Ll P PP A A AT AT AT AT RS T T S N O N T T T N P .o .
R A S NG AR AN NN W AW T A R I M aa Rl b WUERASAGAY

REREY AN VW UACMOACUY IR,

i S T 3
DA

EN

-y

»
e
A"

(Cache board | HosT v Peripheral
VLSI-PLM emory
{Virtual (SUN-S) Device

eache)

;&
4'.,1'

’\l

a
-

.4

Standard Bus (VME)

1,
"'

.
}

a0,
ﬁﬂ

FIGURE 1 BERKELEY PROLOG SYSTEM

v,

S
>

]

]

L - - L] . -

Y A O S A T P T
B A S e A AN o i S R

IRREREL TS I 1000 a0 o)

e) ;-\(uh.\‘nt&1.._‘|$| LA A A \\.\-\\\\4 S ~
v nKVLn L *n.t-lnhqnnhhw\- S . e \.\-\ \F\P\f\‘-.a .-.-.--\-Ms . \ .l‘ PP oSN f- » df

ST BN @ N Oy ..xﬂ..x.........«bxa !r........\..,......

’ P L A

s e e At
R SRR eI e et BT

———

[VENFR LS T
Secdiiname
oo

m-..n—...l.. e 190020 1N0p0N - - T.:x::@ o &_:U SMJG—|~WW—> .*O 30—> —U>U\~ h—o..—\ .N N.:-N-.uh

-:.‘«..-.3!&._ - simaan

A TR I SV PR N*:Q@l&c { rpe.._zrzvl‘w:ﬂ.w Il 0 0 ..:-..E.“—Ev\m:.ﬂ.w ook eI m 1 ,
v iei Ve 4
Dw .:.i“ " "..“z o - ”1”. H" “u..._uﬁ"" 11001 4ike EIA e e L I -?.!!2040 e e m Sﬂna—m—"ﬂ 0et £2 ca0 .
e T atime ROTPIRTORY S Perid PO/ TTR .
S:: \C_ 119460 18048 Wy, > isnay R _.4._.-A < .lly 7—’\4%.;:!5- ..‘.3!& ~o} < unsna 1
S | Pt iy Wi LA .
Mﬁﬁm Z:..EDAAQ:H. ._..n-_m,—l‘d e o &i'? e -J
rHUL 39 - sesre
828 32 eiiet e T -J
mmmm ~m ..t!fﬂl&.:‘l&! .J
TN I hd g 07 ISwd | (=] x
- [i$ 1Y) - R " i Tied [T '
YT R Ya— T I6uud wu- "
P ..SQI)ZIIL:::E... ._ Mm uumm 5
T o o- oo L+ e .
LT lal aiilaas e 2 l.-
b crmmsmrmaa s sgriay | 22 19¢ '
rit f W
) U i32 K Ly
Vst 0 E s10ute i LF e ot
L PO g g — HlHdB L %
D S+ L THY T AL Ml '.l“ - .l‘_
[Ny T ST YT [V TP vt [..\
At 1S 0 < y 10490 i SNLYLSe = sas F r
NGO ’ [rT— . . K s WY
A LING I . DIA_:.::.:E:.- poanrimene !:imi -..d “nm m . \.u
] o xer g Ined wu el -
e LU T Toamte mw -m.hn mmm .\A
[_d i Vi 01921 1041M 126148511081 N
i
) VL IGEE PN e INI
o um el l- a
L Qdlu 2
mu Zhwh LYY - .o B l.'!.
v 8g% Whierai metucy Venssum o o x
] woim ..&
H . A
i : 101651 14U ”
kY (ER11518 g0 g~ N RILNINIS BRI Y STy YR - B ... A
~ tumae—a ,a-.-u " — Rt = f\.&
v P diu sam O o s ..\.M
“Onai 1801 4D —) ORatEi o Cet
1w an wetith _-w

O8N IN] <>
6risis N

-

1827 ifs n D= 3

(i2iige.w

S0mw.iS20

17 3Suigd ‘ B@ M X & ~ mw

-'~.“
. S

iy T e | 1)y
tut e BRULHON
o
NIRUY t016S51 10U T T T .-v
U L 1eund \M - iy
T S — = m ..J
—— e ————————— e LA
97 Isame T .:\ "
i g
R N . e e ol M § fuisna Oaiemmiaim. Lo Ming eetuiisnumcr 11 LI .
N e I e 4 it fleme o %
?-UM-J #H”l’fﬁ :."‘OA 11130030 [[} L0 ’....:.lAY&lé...::l _.-\4
_.-.5.:-5"\..1.:& lm:. el o - {0 st oriai .« A
1wu Ql
(N) ﬂ
eI Livamoo L Sormmuam el o sk -8B [} AL ’
\L}f .&!ﬂ.ﬁu wtier A
T — !.-.O‘IL-—:-: -.l:l!?:\b_-—_:l .-c-
l}l..f\: ’)’l’/ﬁ.[llb".” h niter V.-

HEAP STACK

B

g

FIGLRE 3

AL LR PRI L R AT 1 &

EE RSt S % et gt ¥ ad gy

TRAIL

[}

PDL

PDL ! 5 L

A fd‘.'-'.;"-FJ'ﬁ.“'ﬁ'l’,“"ﬂVN Jal e’ et ot gt 4
iy’ A

H2 SPACE

STACKS IN THE DATA SPACE AND POINTERS

en phase [
ROM
512 x 180 ——*l
interf . o
interface signals - 1 100
> b phase D
MR | P (
____..__.___J pbase O l
memdst bus 2 L————" 32 18 0 ;
—~ ~ MICRO ” ROM
mar bus DATA PATH STATUS |
» {LSSD) SEQUENCER ADDRESS
”' opcode bus //a OPCODE 8
]
—
forceaddr bus L INTERRUPT
7e ADDRESS
'
FIGURE 4 BLOCK DIAGRAM OF VLSI.PLM

.8

L7 N0 AN

N A A e e - .
> . At e e " *
AT A AN 'ﬁ_{hf;‘ﬂ KRS -".,.-" .- ~._\.’ AtV L % . L e e

2
-
-

2

.
™
A
W
N
o
0
2
pe

r-,;..'

a
”
N

.

.y
s

‘.I
e

2 S
l“"l\

'
RS

ATy
LY

‘.l
|5
Wt

e

x_ %
I,.’
S

A S

ad

A A

Salai Cal il e

Ay

el
-

""v‘.K - ; -

ad
aT at,

i Sl

w

o

"M =g

)

-

J W

-V

A A TR A RE BN LA R A

SRR

S

o) Y

}H.luw) (1 n_

&)
o\ .' [} 2ttt
\...\..xx .«r..l. 3) &. x...r.......a
-.-
-— .
yiedejeq jo uejdioold ¢ aIn3i,|
-]
[»]
1 .
2
3
an an amn an N an
t {41 1} £ 14 43 Tt te £11 111 M £44 L 14 ze te £ 49 cCam (ZENY) e t44 t441]} !
2 £oHv Y
oeo| TWOW| N 2H s H 1 Lo || msd| uw | ww| o NV | NGd ; 1Nad | Zouy | 196V | 1su0d
n
e
.»\\\\\\\\\\“\ L L L ‘ (L '\ \\w g \\“\\\\\\\\\\ \\\\\W\\ ﬂ\\\\\w\;j ‘ * ‘ ’ '’ ‘ 207 7 0 ’ ‘ ’l 4 ’ £ £
N8 NiLL H NG Lvan
) 4 A
POV IVPVEIEG000OL PP IP00COIIIINIOPICLI 2800800
68 1
QW\ ﬂ\\\\\\\\‘\ ‘\\\\\\4 \‘\\\\\\\\\ FEIOrTIIIr Y, \\\@.\\\\\.\\ \\\\\\\\w “\\\\\Q\\ Ll dLldd ﬁ\\ﬂ\«\‘W\—\P\’\\ ﬁ\\\\\\.\
.“\\\\\\\\ \‘\\\\\ CPLI000008000070000000 90000000 \\\\\\\\ﬁ\\\\ﬂ\&\‘\’\.
’\\\ u\\\\\\\; \\\\\\\\\\P L L Ll Ld \‘\\\\\\’\\; \\\\\\\\W\ \\\\\\’\\ ‘\P 4L L4444 \\\\\\\\W\ \‘\\\ L4 \w\\\\\\k \\\\\\\\\\L \w\\\\’\\ -\\\\\\\k CRPIIIIS ‘\w~
snay
¢ 4 4 Al Y
(L 12422l 222342 i
U i Sne v R
:)) :
\’\g \\\\\\\w\\g (AL L L L Ll LAl \\\\\\\\W\L \\\Q\\\\\\\ ‘\\\\\\\\\ \\‘\\\\\.\ COLIOPOVOI 1P 8O0 oPre? \\‘\\\\\\ \W\\\\\ \\\\\\\\o\’\\ \\\\\\\\\.\\\\\\\\\‘*\\\\ \\\\\\\\\‘\ .-c\m
7 _ : o
.\\\ \‘\\\\‘\s \\\\\\\\’\\ \\\\\\\\\’\\ Ll e ddd ﬁ\\\\\\\\W\. 2L L L AL L L L LR AL AL L L L dd ‘\\\\»\ \\\\\V\ (L AL L L Ll \\\\\\\\V‘\\\\’\‘ .
b1 T
00 | TNIOM N TH s H i X8 m’ MSd Hwe HOW Y nw 51Q0d nad CROYY | 1V Wi mo) ..‘._
(ywn Burssopps) . ,-\
3
.
g
i
,- Aa
¢y
"
'y
O‘!

&
g
3
4

U

PPN UV UVLAOATTG TN

2R Ee

D Nl b v I R

;
NGNS usouv

LA T T 0

ity

weideiq [9Ar1 doL s, (YIV 9 dundiy

(REL

SR

v <t

Varis e e

"weg (Bt
et
et 1.1-

N
(N

LR

e
L%

.
LS

Cd
!

-

,4

I NI I I U WY
.F\:'\:h\:h_nx, .\'&\ S

Voo R
» ‘.,C-.bi*.a\i\

n

et

\"

G

-

A

. < JK : .
K @U@

—

weidei(] {94977 dog, $,3001g 12un0)) L

¥
2
M HUE | pulirs AT snauo g

(M1 gunTs it 125U 1L

aandig

L0 730141

i d
; DY L Loy M I SHCMUIUO T
; VUCL SUETe It SIONT 110

00 N0

(115081 S5
(hsnay o—&3 ¥4

s ngron

[EE]

g

W)

tylsly 10 4ceter g

T IE dggoiy (MM
oo —
£110 iﬁmmu.mf N1 ISSHAN e
WL -

N LSSHAN 198y (11500
038 utTeIICN5NENI LY
1.8 vmﬁ..ﬁuwc'n:ﬁ’: L
27V8 5,1y 11010008
£3@ zagraIL°IShoe
vla —.md._v‘._m:;m:mt::

€518l)
<3t 10) aLit 19T A1 WAKIN
- 1821 T T T T e
(1 11ne~snag ,wvm.xWT PP b TR
8ZyILNNDY by ——€3 (1IN SNHuaH
L 1{11n0”SNBAGN @!1@?; gacl 10122100 =TpR T iee e
58U} (L2io Oum\e«.mé_iéc 1VINLTSNBNT L L
~ - vaey = | THAWNLST st Wﬁ,&::ms 1YAUON
(1 HERG SNaN11L @lﬂi»./.wl (4210 Gl@ﬁ%h&.mfcc
i, fgsts 891181 11,5
y L — w e um(iill{-u:
A (9 E%,
; 1€ (sfher——<0 [1€)00 2 fo 0w
; 0™ 1gfdter——r {0 100 ; %.z
J ~ UV
. Yy OO
4 Z 4 v
i — W)y =
hd m
X 4 1
!L;
- — - -

-
PN T L e n

PNGNATN

o

¢
| o

S

g
..-P:‘d‘

LT
o

R P Py T
LN L s o s

T

(P)

.
A

g

WL T [
S B Rat o 6 b Nidne R n 6=yt 6\ 0% 0% Ul Uaul STt oA Y o R a Ve S TR B Sat ~ ket o pAa S

L LR A% a¥ oy

oS i
mm%ré P k%%.,

SIAUVNL Y

TAKRU L Y —

..--ﬁfd.,

WAAIEL S

nest -

HM.N\SZZ I\Ix!wi.wu.um& ‘_Z:.l vcﬁ-

vesl
L28

_Eesdy 1a07 10d ivsl

Teed 3y

dwo2™ |pd
grc g 188 %
21313138 ai..m.w\wmrm
):..SH&\J &O n—: _Q&
.WMM“ e (D:£1401L
HI\.\ taret! w4 NIIND =H1D

. WA RN LY A ol S G L A ‘v'.-_tin

_ne,:.:r_ETJ

RLIEE!

e R A O
RSl @ P
NN AN .ﬁ.ﬂﬁ.ﬁ e @
AR IR) AP

.

wesdeiq (041 dol s,yooig 1dd 3

*» INQ T YD~

1921

trsl

w18k JAQTA3Yd

(Qs:€1104 :

(Bs€1d0L

(€1d401L
(21d0L
(11401
(g1d01L

o JAQTHTD M SSHUAL it WIIND 4017913

300230 1dd

0) (%) [a]
) Ty e
@ o il
w [e3) [e 2]

nw o
13 23

T
\':‘\."t'(\"'l

;e
AN L

o

TP

"‘r- .] ‘.;v-"‘“"f'\!" ‘f-f' -“_-".:f{‘_-*

Eod oo o

B !
-. .-.--n ~- ,.n N.\lhn- . ¢ . Cx g RW Pl -- RAN P -J v -- ~.
T XS BH K p uzhnp-}-.l\}r-v w .— ..\,..\f - -...-.....

[0quAS S, 300[g AW "6 g 7
(2

[0 0 O O O R R
rm S S AN 1 S S S oo B v U n

> Gl I s R 6 T i | o Q) g oz r T

' R0 IS » B § B R N S D D 2

™ e e { . ! X O E1)] v,

! & I o B e B o 28D -0 m m X

— IR (e o @ I S

m W w O O O — 0 "t

oo o c c c Y
oo ~ TOTleINIT NG E%%&}l i

&

w (as1easng I i

M\b e o
(G:1E€1ISNG 11}

WH‘ Q (C:IEINTTSNG ¥ 3

cog: 1ereng n 18— .y

0¢ —sng” : - &
D wmeDD m:m FQQZMZ —Dumm_mam DJQ] > (.\”...
(g¢1 - - 3
9eie)Llng Sne -4 (p:1e3Isna™a D P
1 o £
Quﬂmw.ﬁzo r.va KDZ mmaoﬂmvﬁLH Dm MDVVA .\....4-..
£ i 3 n =z .\..

< R R T T NS
- E AR - I < et
O 9 =4 o ®© 2D O s 0 50w G o
~ O OO Mo D g A WD - oo m - S
—_ O 0O o OO mw%b:.l.m_mwmm.m < z 929)
wwwﬂwwowaﬂmwmwwam 2
rrrbibrrrrrrrrhd 4
73

X

r..(“

o

....‘“

...x

\-F'

-

g o

Yie? 5

LaSi Aokt ale it ghl o0e oAb OBt ol

T~
-

TV

Lot a% 0t e o int

LR

] -

-

U U g VT '8 aTE 2t 'S 2L 2L 2" a0 aiaar e byt

LJ *l
’l .wl

A
AV

-:

\
rxrxn x ‘e

LR TN
.v...r.a...... 2

f-
SR UARAL R \....**

}f.-funhnn.

Tyl

SRR S S R §

-.v\.\

1

...- ..«.\-.. ! -\ e .. N”.V_
L4

A

4

m‘u

|

SN

spe1a(q s, ¥oold YAW 01 auniy s
.A-J
MUW 2
C o
o
*
-
.
'S
——— 07 JSUHd 2
-zzu:mo - 1%‘::; &
-d-v Ly
:..15: vvf
m s g:. yompa et d{iduru -~ ocdhny (@43 g y1iu 1Y X
a zaLst e
2 s ouny 'ﬁn.
- i
HEe—<e tie Ecz IR ’# (e i e gt 11 L e 0W 3N o A
SN d weTeTsa %.:.,_*\I 13 - A @0U L¥OKaT ale- ﬂ..”_.”..::z_,.x.,__,_,_:_ KX
100 NE THOHE—<e4— (V€ 1¥0M AR ﬁi\ﬁ,_m, KX
sl . > P
- t 2
/\& ::,OiDUIaDi — dd1 40M ._..: _ﬂ. _" w._.w. ﬂ.J“_r. _;:ZCP SHgH0M f-
:._.. seds _.. 10 165uid N\
:::_ (Y LUUR IHU LAUR .C.w.. __.wlf - Z02dnig :mc:cﬂ. N
- e — 5 L) -) ————
.y ::a_f”. e “ Bnnuw 2Epee? I ~ r99e8 B T i — &
: 1511840 1 40K TR T T :4._ ANEDT Y0 —
= 1008 ‘u 53511830 A T e me A M_.:.:::._u_xcz E 160W I
ey s) qeasinn0 1300 1 acet w«..} wgqrd MEUHTBOH (06 - 11941 m_____ﬂz
o] I ST g (I YN = 1% aim At S SOV “iy
POLOUS € e @35 AHYUHO L B0H CLreNTaUE # 5id HOW
PR .!.V.i . 'A'\
T T I (1 180UK _.:)
[T TR RN L e ‘ I g. - (o) ANy —.A:.l - ‘-l‘ —{1019d 1
W L) .mw ..,...:. NI19UL |M
i\:L D123 | (Gc 11=N19UL esisl — L
G T LR e M* . _,-c. ._ r..u =l LTI e
r0os |
‘ w03~ aclﬁ ..qu,i_%.z%
ik Spn Y o 1Bl -~ b e
oy S8 f {11 40u P C eie
rusl :r: 699 1 = st e————-- B woe
162140 uh 310 .z:_..r.zxi
t1ish I T TR ;.::...Lom:i e AL INETS0ET 1HaR 3N
LI ‘-! T RN Y TR ﬂ,:: i I .,,._Zl_
28 [N
A B 2L 11IN1D1Y0 et ising VLo
~ - Ay M e ent)N SNQ Y
CLINOTSNA00 g3 sMYD| (UN LD I 2 w:m Yl N * 1S0g .:ﬁu
1ous] o 32t N6 GNY. Ausl oyt LINL Sy HOR
- - o e mTmT SN R B¢ N..__: ¢ _z_f .z 1YUR I ~ S I
- {6SINTYLYL PO oo :..ﬁ: _.h., 4 RN
‘}d . umm.._.,.: b N1 sy uau AR
C11aUR gl)] INTHIU0 LNy —— S
| I L
- - - -~ A A - - =

AR LN
(.A *...z... -x Y

L.%A_......r.

LA 2V A s |

* e atl

riginNgu el -iwn..

~
¥7141

esd

L

et :aan)AW/.*loﬁ_s G SR

S|IEIN(S, SO Js13Y “[| dandiy

UENEPAVIRY,

=
[
e
4
»
.
¥
«
’
b
r
x
"
:
§
!

A a A e

R I TS R T _
11198 1e v:s-f.e,,..»(fim‘f.cm. 1INjU 18O
fpysl 2vesy L
~ e n
e patg €08 8 1 € g e A
t
i S T RN B —
R CLEL B F@ml.us?.:ao 2o}~
A w L ARIN CTTT il 01] " ' 1ie0w3e
atriom b — Wit c;. —— {10l
e ATRTH N NP | F—— ,:u te- b
sl g.:f [T TTH
It __war
4 . T I T T T T
m.r
.‘v‘-ﬂ~ =
: R~ ilx.ow&(TNTICIN
:Y;; 881
41t iy feena e STy T T
:\T.:::x:co —t mh.ﬂ.lxo.
e — 112082
T 15 18121086180 qcv:: o ._”_:”_“
wOFﬂ ~ ’T.M:L —:d
: H 101211108160
::u— {(:’(lr‘-v‘m\t“—x.\l -
_— \Ai\c’L
- _».|Mu— 8 -t M’l@.vslll

[e —e—e—G (T TSNATNTTE
Litshosise ———3{ 1 JSRE N1

L INTY IGO0 ca ———€ 0 T 15064~ 30K
= Sige gpaad ~———e 30115039 79
D1Isng Ty
—€N1Y 180 15N8Y

—€ N1934015n88
=€ N4 1§01 SNGHGK

Lo e

\ T LT T o T T I

— e e

e o

(g#LicQuid -

1DL110HYY —4
LS 301 UM o]

(01984071 —4

Huay uonoay

4 u
ir
INEnEs g ery E022
[T I R4
[SUNISTE SR TR TRALRL
Cye 0 gl

BT LR Al &

har BNULYATHTRTY

LULFRNEILRE

(gl riitan

189498301

[SeTRSTR 1!
(SIS
T

w

P ﬁ

3 ® 8o LI
™Moo mox
o oo v 0B
VRNV o e
A~ o
.r..-.-
N - VR
FR R -]

NS AN S S

10521294y

10221200y

113Uy dd

[RVLFART 7T

(0:2)194Y

 © o
nea
W o 8
~ Mo g
3233
€ 1M Jr
——— SRRV By

A R 3
(0 I Genag
A A TN
[0 755} uf i ik il o0}
N DD
T S e
-z

<"

(R L)

« W

N

T TZ BT TN0T)

(1120yy — 011294y
C1{guy EAZ {31084

SR AU (B O ¢ BRI O ¢
Lm0y --aot 119810

LI T T

»

R TR S T I U

e :.-'-

[y
A-

PEILW oy Y i ol "
] - H I , . « AL ‘»-,-h-h:\.
' PR ‘ LS S " . "t Pk AN nh. st Y5 e
ENR A W.....\».\ (LN
A
: 5
sasuanbasosdty a1 Jo wesderd ¥20id Tl 2andi g
gJuouounbusoao U K
4
A\l
.
_‘\lf‘.!ll -&,
H .A
[ey T -e.c.té...n: T) : 2
—or e W T 1_) .\.
T e S I 1pman A
[e Q e — K
2 1) OOV SN0 ST R e ﬂ :_\.l....n.;.. - -.-
<3 L) LpRen — N — :_-:cr...tTnv LA &
< VeI g ™ San Yy .-.p:éh. oi'g ragen ..-..
== YB1 T -1 303 R s "
—zergTy W ﬁm(Aty .J__ e rtaes B E - A
: . .«HH‘H.HQ e iy [k e e) e g .
Cor WY T W . T a9 0T LBl 18r_
ﬁ}-mm\,...iw..\ﬂw = ,’ .._.s_mw.. 113n0a.n® ,cs_.a...*,(nb\! e ..\-n.
o.?u)«l..‘..q I, traanoee 11 wngdun - a
crEe S L sl .
ISR ’ e e — [Pevre

_ —~a el — i
Bes apddo
—_ vll‘\t\ll{\rlﬂv!..‘.‘
19V) 9pecde R A
'
'
,
>4 ‘lll}\,l\c:
T
s
R 4
v .
P bW N
f‘
W 4 - h Y iy
— 041 16110
i Hel _un 3 : PR
v PrEL et]
gy -]
v T v
¢ I AN
v
4
v
7
. 136 M '.nl\é [¥% %] NG
s el — prayepreny
.
. i VR e
-l amt
! ¢ T
; T T] el HESRGR ~ee
’ < 1OYRINEOR NS - malt) * 280N e
. 4 B! - josdTIf N Sz
”_ JEEET= 1L repPOmnL - - - b
3 - s
: H et = e v s o
f T Led § 33 4154)
s fL [T UIEY 40l
19 10u30——f wom — — e [LAY e
m—z tOguan— (e = 3 4Ry
M Mw 191 PP .o.o..‘i&.ﬁ'\.@c:‘l
- VL PAPRURL

1 of 128 words)

ROW '
ADDRESS

ROMEN

COLUMN
ADDRESSD“V—‘—*% "El ‘":l '":|

l—h‘t.ll:utput

ROME:N -——45-—4[‘:-—4(:?—-45

AL "I R At g AL SN ¢

NOR ARRAY

Ty Ty

¢s

™~

Figure 13. Circuit Diagram of ROM

J00w —

I NS\

\ control ective

(1 of 4 pages)
ROMEN

<4

Prese 0 |
< 90 aw

~ Phess

< a= R

AGSress

ROMEN

Deta out velid gsta

velid date

7 ik H

¢ O m

Figure 14, Timing Diagram of ROM

FUIRIPCEIIY WY VRN

AT T EPE)
ARG NYN

(‘l‘;x;n

P A .\) NN

LlLLeMAL g ’
A A ARI AR AT AR AN T
WOV YRS (B AL T

LASsA o

woelet

s
*® J-.\-.,-n-ﬂ.

-

. ‘ 5

diyD 2y Jo Inould "SI aindiy :

S s

| ZLNDL3IHS (03£)ONNOYI {03L)Y3MOJ yoguwodlng < — N

] ., .-w.

TA./ TLAULJIHS LUUHIN LG Awll x

‘ w ;

7/ x

f% 41un ZNIL41HS Nll& X

| o

O\ =tuisyl ww <O -
>

J *NINLISNI NS .m

@M.u:mzzuz _ _ H m w _ ¢S i1 *ll. s

o

|x "

@ﬂ *JUIYHIN 11S 14 A*icl. w_..n

@.\Vi x 1144 R AQ! aw._

@M ®ZdMIN Y1414S Aiul m

O #1amaN (0161400637404 A.W.l %

y . ”.w

IAl\/‘, (03 1€)IB0OW3N. T ERENE) — Ww

, . { i

] L1d430x3) =135 44 Amvl. ..W

] 32vasa (0141300340 £ — %

. . []

53

(0502)14HW L s

3

X

sy

5

X

3

b

>3

A—fﬂ

vy

oy

= R L L Y W WY LN RN TR

7'

— f | — programs
PLM code R
C > = iaput
MICROARCHITECTURE
SIMULATOR 57 = output

Force file for Rfsis'cf] "-’";e"“ for r::,;.h
QUICKSIM %8 next microstate N
RN
e
COLstPL chip > 5
°

55
o
o

QUICKSDM . ’m
8
register contents and Q
dats on buses as a NG
function of time DN
when changes occur NG
"
A
.'-f.‘
"
o

5

EXTRACTOR -9
~T

T

\'! 4

register contents and
inter{ace signals
for each cycle

COMPARATOR

Differences in
register contents
and name of

» next microstate

FIGURE 16 DESIGN VERIFICATION SYSTEM

N TN

ROM

| (LI
SE) E:l“‘llllllll 14 187874
g | 444 3B Jil b LR
i i

- h ‘
g) L O O N UMON U
RCH B et

§ LEH p!

. [TR I T O I I R BB B BN] ia

WA WO W RO W W WO CIC T TWN o e It En® Ny byt gt by !
rn ” R LNAL SR (SAR N0 02 it a T AT St Qe 006 000 gat fut g Lot ats 105 e Ba® At 10t ba ¥ iyt gt hob pd i 0°g, IO U AN X T\",;’-F;V

X+M+4

PERMANENT
VARIABLES

mololz|< 3

Figure 18 Environment Frame

X+ 15

TR

»
BP »
o,
cP RN
E 1:\ J'ﬂ'd‘.
AN
SN J& 3

A8 -

A7 NS
> oo
A6 A
A,
AS PACA
R
A4 AR

A3
A2
A1l

Figure 19 Choice Point Frame <

]
-

v L] LY S L3 - - - 5
AT A AN AT O 0 R e s e
Lol Aoy, AN TR S AT, TN A A N A A N N N N i A L Rt S

»

e S0 WVe BV UYL V0 D00 3%, 0¥ 0% 8y a8y giy"a 3"

-
)
n
.
)
w
.

L _aten
L"I’l
[
L A
1o 2 a®a

Tt".,"(“ n
AT A

34 29 27 0

@)
)
Gix
2

A _Amaen
o
o

<
bR

i

22 {

“»
-

O

0
f’l

(4

01

—
I
‘.l ‘l]
L
aa sl

*:'v ®

10 |C G

L4
Py
-

e
A]
PR A

LN . 1
2

T
¥
»

31 25

..:‘

11 C G| XY e

,N‘,..

wE

‘ C CDRbit X = 00 small integer Py
01 other numbers B

ne

.

G Garbage 10 atom
bit 11 NIL :

T,
.- . <
(5{‘("1'1(3,

'

w s
I
'k"x

f Figure 20 Data Representation in VLSI-PLM

10

L4
»
>

LA AN
v k

" " ‘l'.l ‘l "

L G N N R R]

’ "
S,

>
-
-

- -;
ey
LI S
AN
A
ok :J’
“e N

z

-

, ..
iy O
o4 .'. PP

E %l
s,

P

.

PR Id,

- I’- ~ n}-..-'-\.-‘.-‘.-}

A R S LR I I TP T VT -’
RO AT AN .:&.:\.:.;:__.:\.A\.-\‘-_\.-:‘-_' N R

» ‘J ‘.-."I\'QN”.\ "\'_. 'J "ﬂ TN ‘.l

PN
Al Al AL A A A e A

APPENDIX 1

This appendix has six parts. The first pant describes the contents of the environment frame, choice
point frame, and the tagging scheme. The second part gives execution flow diagrams for each instruction
implemented on the VLSI-PLM. The third part discusses the details of the microarchitecture level simula-
tor. A block diagram of the simulator is included along with its description. The sheets of the entire data
path are given in the fourth part. The busses used by each block and the control signals needed to operate
the data path are also shown in the sheets. The fifth section contains the top level sheet of the microse-
quencer and the details of the micropage select circuit and the microprogramcounter circuit. The final part
contains timing diagrams of the various chip interface signals.

1. STACK FRAMES AND TAGGING SCHEME

The stack contains both environments and choice points (sce section 2). Figure 18 shows the struc-
ture of an environment frame. Besides permanent variables, environments also contain the values of cer-
tain registers which must be preserved across the execution of a Prolog clause. The following registers arc
saved in an environment frame (ordered from low to high memory):

E : location of last environment on stack

B : location of last choice point (and the current value of the cut bit)
CP : where 1o continue once this clause succeeds

N : number of permanent variables in last environment.

Choice point frames contain sufficient information to restore the state of a computation if a goal fails,
and 1o indicatc the next clause to try. Figure 19 shows the structure of a choice point frame. Choice points
contain the following register values (ordered from low to high memory):

B : location of previous choice point

H : the current op of the heap

N : number of pcrmanent variables in current environment
An : the contents of the argument registers (8 registers)

E : location of current environment on stack

CP : address of next clause to execute should this one succeed
BP : address of next clause 10 try should current goal fail

TR : the current top of trail.

The four data types of the VLSI-PLM are implemented as shown in Figure 20. Two primary tag bits
identify the dawa type. The four basic data types are reference (variables), constant (atoms, integers, and
other numecrics), list, and structure. In addition to the primary tags, there is also a cdr-bit and a garbage
collection bit. The cdr-bit allows compact representation of lists,

The constant data type also requires a sccondary tag field to distinguish between small integers,
atoms, and nil. The secondary field is not fixed by the hardware of the VLSI-PLM. The values given in
the diagram are typical.

2. DESCRIPTION OF INSTRUCTIONS

The VLSI-PLM implements the PLM instruction set [1] along with suppont for external (host) pro-
cessing. To lessen the performance impact that external procedures impose, a minimal set of general pur-
pose instructions have also been included. These instructions are used to implement nearly all of the pro-
cedures that otherwise would require host processing.

Figurc 21 shows the execution flow for each instruction. Execution flow of an instruction begins at
the top of the diagram and exits at the bottom. Some instructions have a second entry point, indicated by
the entry labeled with need pf2 (pf2 is short for prefeich2). This aliernate entry point is used whenever an
instruction nceds the sccond/third argument which has not yet been fetched.

Each block in the flow diagrams represents a basic block in the microcode. The left-most number in
each biock gives the number of microstates in that block (which is equal to the exccution cycles given no

e e e m e eet e
D I R AT ST S T R et B I S I
s A A A AT

o

- - e .
AR T . D -
PO AP S UL A S, A R R R S S

’b‘ n"(;n' I.‘
P
» & & 42

e ®,

l‘ -!.“‘l‘
R X X J

R o o g
l'.‘ " " 'l 5 .‘ 51

o
)

MUY
P A4
55 %

[
<&

. LA
5 ‘.'S 3 |;-"-
ooy

-
o

[y
.

XN
N5
‘) ‘l <'l

2

<y ,

TR Y

%

YRS
-"':’ ' &‘{“’

A
:"')'.‘"rﬁ"\ -
Su gy

. .,. .‘r ..!.

o
]
> .

‘t"b"r‘“"""l't';‘
,{)1’ Pt

A0 G

AN LS

np
T %

s

yoag

¥ o

A e
o

v
z
®

3
[}

3

":'\"\;' -
AR

€ 4
:"\v“

ll.
[NENEY

%
S e

l, ‘i- .l
Lol NN

‘
..-.'.'.

LR R I N T oY : W YL B > O RN VL Y Y T L LV WLV ' WSat e v
PO W W ML W WU T W R R Y Y Ut 0% g Rl DR sk T AN IR e S L R AL SN g ML AL St Bl S EAS LaS
A

memory read/write delays). The middle number is the number of memory reads performed in that block,
and the right-most number is the number of memory writes. To the right of some blocks are notes indical-
ing operations done by that block. Pfl, pf2, newpl, and newp? indicate opcode prefetch, argument
two/three prefetch, update PC (program counter in prefetch unit), and add offset 1o PC, respectively.
Microbranches are also labeled to specify the conditions wtue for a given path.

A complete description of each instruction will not be given here. For more information see (1].

e

o X0

.I"
)

ARAE
oy

5

L P

v
DA
(ORI e S U]

‘

L N I)
e
. .

i

=z,
'
s
o

el i ieh
S

..;a;‘

g
v
F A &

L
v

O
27 'ﬁ;-';';'
ol 'S}

SN
Y '.”.

t".-'

/
Y %

[
.
Ly

o

&

1. B. Fagin and T. Dobry, *‘The Berkeley PLM Instruction Sct: An Instruction Sct for Prolog.”” UCB t-:.\‘
Research Repor', CS Division, University of California, Berkeley, (Sepiember 1985). t:.:-'_

N

.A

e

- Y A] A -
-~ e T AT AR T PP T N T T AT AT A T P At et At ey
A LA AT, AN, A e T A A) AN A A A IR L L i - I T
a) Wy ¥y .‘x\.‘\u& % P a™a A A .n\.A-'.A O T ST ¥\ -.A_ "-ﬂ.‘ N.A\. iy .0".‘)«.":"_\-‘:-\-: '.."':"'. LRSS L.‘ :\ -

add

allocate

LA P

e

r

and

need pf2

[1fofo]e"
f1
B lelo]

IFETCH

Figure 21 State Diagrams for the Instructions

R LI S L L I B IO)
- . -~ - \ \. - -' .\ .\-..-.
e

o e .
VRSV DWW SRR~ (B R, WS VR

call

need pf2

pfl nn“ plt

IFETCH

codercad
[« [o] B
pf

IFETCH

codewrite
BEge
pl2

IFETCH

cut
(31 o] en
cut bit on
B sct
IFETCH 412 pf2

IFETCII

'

N{\:"\" '.{‘-"'.}‘.‘.

. Sy

-y

o

TN A

A S N
A A A A

‘.'-'.,-.'J'

LS
e
.‘
o L

;::
® %

X,

04
’

v
4

Sy A
s

o

|
e
. P
RNy

ll:n O
L] ‘.

.

& &
faln
L Xs

A
7

”

RIS R R RN TR - At Al At * ey
" iy . o -. v ¥ v (2 N /
o $ gl 2 '8 2 A% A 4 1 g LR LV

P

cutd

Flilﬂvﬁ [ole]

IFETCH

deallocate

decdr

RETURN RETURN

S P VI VI M S N N PR L N R e
NN N A A N N A A A R PPN NN WA A AT NN T LN
/ A ¥

s

N iy
QNI

‘-‘, "

o

LT
-

- -
d'.'"-P

\.- PR

Y
v
1

SN
e
{-,"n 4 4 4 4

b
»

‘et
g v -t
l'.’
'3 +

o
¥

ot a P |
Il L
Ly

:‘.'l"‘l’..l) u
L4 »
A

-
'
-

g O K . X X h-l.lg Ty o Lol o o . ‘ v o pm . . l.‘.
oL ey o o P ! h Pyt 3 P R A N y y L i
....n\.h.r.ma N e 'y o K., LAY 18 N NG e YA A Tualy na g s @l !
L . 0 B .-.v.u---\n'lf..-. [\-u-..n-. .nb--- . .r.- ey A N S
S O N ® AR YR O L S O i S SR YA

<
3
»
v
[]
_
L]
.
A
.
) 4
y-
Ey
4
.3
.
,
k|
%
.
X
,
7
L]
]
>
4
r
a
1
3
4
‘r
/]
! ’ ®
[}
n : &

).

ALY
execute

deref
1 [o]o]
dereference
o ojoen
IFETCH
derefercnce

v

[\

v 852 4 " B 0at Ba® 02 02 Ha® $a¥ Ua®Vn’ NE dath” N0 4R g ata R R & e 2% BB - -~
LA (N Xy X ! N AR ORI e e R PMNLF NN L RE R KA R e a8 b “ad iR g, g TA 4R 0% §7a e 4eaTe 8<0 0 0k oun R A A" o8 o

external escape ey

anty two

arity three to seven

k4

5N v
N
v,

xS
LY

dump AX registers

.
'

{

al g

g
L

7
4
>

S5

A

-

dump H,B HB, TR

£
P2

55
o/

o

s
>-.4~ -

goal success goal failure

2,011 [2]001
[

NS

i
) @

4

_‘l
oy

o

IFETCH -, update cache

Y A T Y R S| S P XY ' e e = Tm L Te e R N ;) LS b y a AT A
B A A 2 o e T 4 e e T g e L S b S A AT P S S A A

fail

addressfvalue
pair

get_constant
need pf2

[Jolo] e

ook
1

dereference Ax{argl))

l

UNIFY .

-;"1' Y v."" -

LI]

a ¥ a
L)
Aal

AR

L L
2SIV IYY

E O

e e e
SRt o

LSRR
e
!

1

2

o’

N
%y

2SS
Ve oy

[d

-5 v
o

2o

e W e e Y
P A AR
'y'r.‘l'\"l

d

s
ry .

T "l"l" 7of
el

P

L
5%
L

'y

e

Va
[]

L I
-~ .
»

¥4 "
“‘{| »
LR 1‘.5\

y
o s

’

3
«

) MY
LA L AR
.' -

*y A
»

=
5

e ./'54.
-— M

Y l".t.'

I A

--,-‘i.. --\nh,- LA i e Y
P x...f»..a..m.. .u PN ..x... s“.\ ba At 9..». DR

.lﬁ e g P’ S I X A e N h]
< Y < XA R B A e T A XA U R SO At
SELIEIENAIRIN AR ER IR A SN e N A f
- L
4 . --
!. -\ﬁ

-

g
=
e,y

-
-
Yy

\J
gl
%,

N
nMal

"
S

p ot
Sk

TN
Y

-'\1'('\

o

"
Pad Ny

1
e+
.«.m
o 4
] -\ﬁl
- .\rm‘
s 3 L
J :
: Yo "
2 ”
s, 9 o
ll_mu
%y
byt o . --u
- 5 - e
o = .mb .-\A
—] B - [3 [= %
| g < « .
— m - 8 7
3 bond S 4
. % Bl S e
i) mv [—
.. : 0t [- m
@ z 1 3 3 o ©
: : R En:
Y el il I b
= D H] -
= « u K ~
L J n —
4
. -]
<
: S .
3 =
<
(&9
L)
(¥
- 1. ‘
- . -M
-u.r.
.....”
.v -n-&.
- -" ;
- -A-\“
by P
3 =

F

TS LN LN WM N N O “".I % N Y ‘. W LW AN () t'..». (XY s .4." oty ~‘- w..‘ s .,. ... ™
- - h % ? v L™

get_structure

need pf2

[Jolo] wm

b (e Te]

dereference AX|arg?2)

wnite mode
0 pR2

funclor= l

' arg) trai 501

FAIL 1FETCH

v

IFETCH

get_valuc

P need pfo
[Jofo] e
ot

dereferen.e AX|argl)

X addrcssm/

lele] [li]e]

Y addressing

o

N S

dereference AX[argl]

l

UNIFY

L - .l 'o

L3
i

L ..o L '.;".0‘.‘0 .

2

7l @

T
".'.S'

»
»
L z
v

‘—*r‘x“x "y TY

"
- @7

B kW w
1‘2’57': P
- S Wt T

NS

I'A‘l,

|
ls‘.

»
=

S
o8
LA g

{.

DN A
1, Xy &t
b4 P

5 “»!
e

'.;5_‘. h)
N
L NN

[0
.f_r‘c'q

~

L4

{_'t'

[\
a7

'.,’r'.
WAL,

>
Y

B
s
ey
A
a4

af
5 Gy

AT
LN

»
hS
-
.
~
-

Jua

3
22

o e TR I B> o
3
/‘.;'.i'.. Pd

7 N
¥

a S

.-
oy %Y
PV LS
I.I
PR

bt 6t Rad €18 4ab Bal dud el hd det BV 20t B0 Al bt el et 4o¥ 88" . rITRE o Yy " ~
[N LU\ N U ! (UNRA R R TR O v = ; Balp A AR AN g W e

get_variable)

need pf2]

oo

X addressing Y addressing ‘: ‘.).
N
STelo)m el

CH IFETCH
IFET °

jeqfilvjle
need pf2

P
»

AR5

jump

Pt as

Y
"
'-

AN
3y

x
.

[1Jolo]wm

IFETCH

1 ‘l \'.S'/\.:; .\.'ﬂl
s % - _e_a
LN AN

AN

P L . L W U R AR

‘fP'

T P A el S S

“Gnt 22t 4ot ‘tat’es ¢ a8 Ra0 4 0% 0¥2 0% 4% AN, o ot o, RN W 5

jumpxn

newpl
2]ofo] 5

TFETCH

loadn

[2]o]o] P
pf2

TFETCH

lock

need pf2

pfl want
pf2 extemalfu®

IFETCH

memread

need pf2

[1Joo]rm
Leltfofm

IFETCH
i e G A

e s b Y
2l {5{.{

-
@ 4.
e

LA
"l. (.
L8 .".

’>,

L)

e

':J
7

’

.vr LI
ar 2Tl
LA o
"",l.l = ,"‘-‘l

Ll

AT
\l I‘I‘1
't";'-'-

0
o‘ .s

v
il
5
o

P
L % S T
P t}f ‘.

’
L B

’i— 'P a
AR

R e T e T T T T e T
N S A R AR S, \"\.‘5‘\"-."

Ll
'l

-
-

‘§a"0 8 9aq

9,

DCTOYYURIOETY

WON FUR TR JOX A MUY

19" 4% BV,

memwrile

need pf2

IFETCH

mult

need pf2

9 3
r .\.Iu. L g

R ..A.

CRAA, S

T

k.\.\\. \. -

UANINAN O.w»

PR e
w\r.......r PRt

nomal exit

e
&
o
JT
"
(Y]
3
Q
=
v
2
)

IFETCH

L L
.A?.A}..l.

n AN

v

Nt Ay

A

W
ST

o N
vy,

L]

ot

N

AN

SR R
RAKSA SR BN
f W (SN W

N

S W
ata

.

Lt 8 00

a8
B¢

a8 bt
1%t

?ffrhhrf KARESN ey R IR YA R e 0 .) - .
DD Sl B L LY P N A N A A PR LA N T 3
L O e N R R 2 BN P L LA S X....r,wsnr-.N(-.o.\-..-..........-._J wunehh @ SISSNON @yl ﬂ\\& TIO0N
3 R SRRl R CC AR JOREARIAIE JANRINNNNE JEAE ARl Il AN
CNASAY, TR TSNS s
R
A
2
7y
s
,-..
&
o
o
[~
G e

need pf2
L2]ofo]
IFETCH

need pf2
proceed

pfl
pl2

s

or

put_list
2lofo] ™
IFETCH

GOAL SUCCESS TFETCH
put_constant

IFETCH
Ccp

[2o]o]
IFETCH

000 079 0% 070 679070 0" 000 QA BT R0 Vb 0t P e O ¥ ™ a0 a2 0a 0 Gal et B et (o€ Gt et 340 et oV Qv fab QN 00 X O R a¥ Gt ¥ ot S @av_ga> Pas

IXe
Ay

PR R

v
®

L

1
<
e

ey
r

o)

.
~

r

b put_nil

1 Tofo] e

IFETCH

b put_structure

need pi2

l I
[Jo]oj Fﬂo 0l pr .

N -

AR

E 0 ﬂ pfl .‘_‘::‘”
l A

Cy v, W

So i

\

IFETCH *{%
-:._ k’

Y
o,
£

AR
4

4 "
-"-a :’ g

o

S L

e

s ,‘...': ': '
L
Ly 5

»
f

o
)

.
a &
» & 5
v “‘
s,

q

3

Y
r"r‘
-

,l)l fsrl ’
BT

£

.l.." o

’
U d

At i Al g

et el vy

-
A

e iSatatey

Al

L sad
“" aTe

AR

e

fachtatpte yia-aiesaie- gt sl Saie s ot)

-

-

RS

| gBa0a% 020 0a¥ bt Bt B0 a8 had) O b R it g b ht

Y S 'y
—" .\f\f\f\?‘%&}\ t

ll -I { .
e g

put_unsafe_valuc

¥
e T
S AT

need pf2

piz

B lﬂpﬂ

dereference Yi

deref(Yi)is var

r
bl
>
[
15
&
2
=
c
=
[
o
o

=E

deref(Y1) >

derel(Yi)<E

K, ’ _,. .- e --A..v--. ..f '}
& ORI

| aalar . S dnia QNWUHM
L - B~
R RSO Mr..a\..-.. 44
W s RS
LA
r

L
@aahhhYy g

’

1]
ol)-nlulﬂ- ,-.N- L

o,

7

T "I T VL Ve)
RN
PRGNSR ONRY

!"-

SO WY . R D Y

.

R

2
{1
N

FAPRT AN

3

IFETCH
need pf2
BN
IFETCH

ol
A A A

Se
)

put_value X
- .“p'\'-.

pfl
pl2

l
.
IFETCH

(g

PPN A)“{-;f /'v"‘\.'.

o N T R TR P T e o 7 - T R T TV PO T

put_value Y

need pf2
11010 1{0]0 | pf2
pl2
l3 1 01 pn
IFETCH

put_vanable X

need pf2

[2 00| pfl

I

IFETCH

put_variable Y

need pl2

onpn
I

IFETCH

R R

" "-"h'ﬁl'-- g™ .« v, - h
W o AR, AN AHNERAN O

b YT

A.'.?.’
P s

'y 1-..“: 4
!‘f‘ 9

L
/0

A o
»
L

Z.-.

)

>
. @
- { 4

£

-

fr-l:“‘v
PN

(Y9N
P
[N

o

LN
S

NS

.
S

12

"
el
A)

LA e
e
LI B

s
T

A
[

{

<

)

oA

o 2
-

retry/retry_me_elsc

B

IFETCH

sub

need pf2

1 [ofofem
[+ ToTo] 5
pf2

IFETCH

@ /

o
o .{x}&

PN
AN

>

NN
BSthhh
\~ \ i..-‘
RAAN!

;

*

2
v-

]
U;

.

A]

k]
»
ld
tA

3

A
a
»
h §

|
%
=
)
t)

2
”

b]
-
)
s
=
.v
-
s
»
3
-
»
>
»
by
ES
3
*

b)

“FI- .u..- .-- ‘
\.f.f.h.-..-..\

PR R AR

.\J.\

3 A YA

switch_on_structure

on_constant

switch_

LS S]

need pf2

[1o lojem

derefercnce Ax[0]

| RAJULGOUR .W“_r P2 2Lt &

l
L folo

pl2

need pf2

Cu WG RGN W E T X SR e
NI AY RS

* > . M)

e o T XA J.\.*HJ

Ay hq LS

F RS T Pl oA e g) AT A e i

end of table

not at

if back 10
slarting point

dereference Ax[0]

A

* code read

a1 end of uble

FAIL

. .
\ x 2
) o ... N \f\ ---.-\I > @

Jv-irhl-rnwfl
XA EAL

- d'l

St abiet

\

\
.s

%

e
2R

switch_on_term

necd pf2

e anL.\ > Py R R ' ¥
* : * [N ’ -
CLEL UL, SO ALY he .P.Kf L, o' i \..sr e .v,m,-\..mrx " &

m. o
o <
<o -lg v
— = K
o W..
o 2 A -
g — &
=) ") - | - (=] \\\\i g 3
<]
3 —_ - -1
o c (=] =4
g
]
% N -
3 4 u
n
i
g -
g 2
8
o
<]

VA SN YA A
L] .- Ii lb .' -
S S @

cTale a g s >

RETURN

RETURN

RO O X “ 8,508 Vot ¢all Vay dap Vag oy U Q. ol o R) 4‘-.h - .".»'-...,.. g *a 8% 4% 8¢ RURY) . v, ‘ . . O ...‘

L

trust_me_else/trust

prl 0]
EAERET e 4

IFETCH

X
PR,

o

V
°

L] try/try_me_elsc

..‘.
‘l_‘-,

v T
Pl
x

m
A
e <]
~
=}
[
o bl
v
n =
w
Tyt voa
".‘ -"’,"'
joih £

(¥}
>
(¥
__J
]
~
o
[¥)
]
Ty
[4
v

. gor " S Sat Fak od ‘ol Bl i el rao g - . 5 Y - N - . ”
U §a®. fata? et et & - fat) Pt g ‘B Uat 0t uf had 000 8t 1at'h,0" M

bind vanable

FAIL

IFETCH

dereference

PDLempty | 1] 0|0 pop PDL

[8]

var, cdr bit set dereference

dereference

nonvar

cdr bit set

dereference

<

4%
1{

Y‘T b W |
;‘p:'-,’

P d
P W o B

AN
.\ I\ls"“
PP S
G G S

L T
- n‘l.
AN

ERYR

-
e o
.l|l

l‘l{‘l"'l X
ey
£NA Y A AN v

o9
o=

e

4 N

~
o
.

}ﬁ#
b I ’
N
;ﬁﬁaE

o % ey

s S a" L e
a_u

s

4
a
-

)
‘." »

h]

}b
.
» o

1{" ’ -
L4 'r_‘l
.
-]

7

Xy "y
Lo

x
»
£
3

r

-
M
e

MCRSES S ESp oo hs N N Jia® ikn v lig Vo Bat ol (il et Sa8
unify_cdr
read mode
3 1 0 write mode
cdr set cdr clear
31041

P X addressing

Y addressing
pf!

IFETCH TIFETCH

unify_constant

wnte mode

read mode

decdr
IFETCH
1100
var not var l
dereference *S
0
UNIFY
trail 508
P O, R N P i R e I R N ST I B e e - - -
N S S R R S S CL TR R A R R S AR S VR
- e A e

"\I\q' R S]
A A

By
iy

L g

e J

e
ol

1,

e fae
#ﬂﬁ.uﬁ

BRI
IRl A

R AR
ot e

[]
o

‘ '
s
-

et R

.‘-\
'~ T
R
o

~

X

.

LN)
PPN

Sl

2%

r
k
” N

AT
A

2
EY LS

/

@

l"".v"."
) a e N
PN

P

1,

4
-

<0 -
<0 .

Y

v ae v
r'/:"’l" (
PR ey

r
1

[
.
[oin]

o @
[4

lals

e s
Al

sy

v

3

1
.
'..

)
v
1"0'
b St ¢)

T
.

g,
»-5

o

-,-.
I"“-’

> "‘1’

_".

o
& d

o
A

1_e
.}l
(S

unify_nil

read mode write mode

ol
3 pf2
dereference *S IFETCH
*S cdr not set / \
FAIL UNTFY

“ut

et
o -.q
-' l-l

-
»

./‘.v ‘\ e .\
IR AN AS Y

>

NN
ll ‘~ .. .‘.

W NS
Y .
&"

.
e

-

. N Cotaiie’ 5 roxox -~ . R TS R T)-f{-?

= 3 PR A tmx ...\.../,......... PSS s P I A \\ \\\..\

2 I T @ A S [O @ .n. 5 m.: > ‘.,.«. @5 @ @ .\ SNSRI %
A
g
~
5
L]
!I\‘
'’

I- -‘

SAy
cY

i w
N

~

. r
¥ ‘ ¢ L)
’ L
q-h L}
..\u
’ -l-
Py
- -i\
» ..
'
e
"
....
-
o fa
LY .
3 3 -
& ° e
L s 'y
= - “
3 g o
L 4
af [N & w. ...
- Q - o
8 n ~ S = s .
.m o s E e
: g i : -] - :
el 1< o - s 0 v — 4y
v & = o & > & =) "
> B — — o+5 U .
3 o - © 5 = Y
I) e e B
9 M o o o .
E | - il .
.
m.m .M — - ~ W
& 3 —\/ ° -
. — - o .
E Elo] |3 . s
=2 S— = 4 — 4
s
- o 2 = i B 'y
5 5 : — -1 N -
o0 - n — - o o L
e =] ¢l . <! 2 o
a R
: n ke 3 ° e » & L
3 [— F—1 N
LY) .
- o /l\\\\ — - N
> n v L — »
2 "
E e
¥ 3
,n L
“ -'-.I
;
.-
. -IA
* .
.vl
.
)
e
-
-' 2
'
I--
.
.-\
.

DR PN

SN AN

» pat
T ¥

IFETCH

AR AN
A OARS

unify_variable

on

var

trai} 505

nonvar l

dereference *S

X addr
110]0 |pfl] 2

’ addr

0 lip.‘l

!

1

IFETCH IFETCH

TN

LS OO O O AN OO LA P T N AR N P
O L A A . R RTRV, " -

"
S5
b
ke«
s
Y
"¢
>
*y
=3

DN
e

Lo
i
S

:

\\'li&'l'
el
S e

8l
.'-’

Py Py
v N 3
e

x5 .
L A4
o
»
<

ron s
A5
)

r;f
e

A
@ 55w
O Xy Y

e

o
w
'J

'_l/ -’-“."-
(.YIAJ [A
.

:

?&ﬁ;ﬁéay.
¢ el
q?ih? >

v
I
- » 'S

ASND

LANA NS
.’"I.‘l"r' P
PR,

ooa N

< r";"‘-' .
A2l A

Pd
'T'

TS

((
l’. "‘.

>

-

.
o0
“ e

i
-

PN

“y

b

w,‘u)‘ﬂ’ﬂq

IR

)

T Y

" AN il el ada’ o ala *ga
R AR AL GE AN Sl ER L Sl B L LS

unify_void

read mode

one left 1lo
1 [o]o] 1]o]o]
cdr bit set
nnn oTo '
decdr nnu IFETCH

unbound var

L lofo]em

IFETCH

unlock

need pf2

1 [ofofe

walt

pfl

pf2 extemalfu®

IFETCH
e I Ll - - e - - - " ~ - - - -
BRI AT 5 S P » T R T T S T I L L S P
Sy e ot R S " Ay \'..\. -‘.'r-.n Ay R A Y \"'~,.‘.-.‘ AT A T S

Y e -,
P

r‘n\&'l'l 4

h,
WAL
AL

A
4N

p

K J

> ®_X
L

LALS

P X W
ﬁ?z‘
s

o
4

RN TY Y
LAALLL AN
PLL L

<
PR s

5

A2 T T

;QQQ{
LR AN

2 J(’",{

» ."a’_4
.l

-~

»
-
-

.‘.
'l
7
.
“s "

Yy
L%

1

f
""l.K.‘:.
2SS
T r
b L

UL A U NN

’-.--‘--‘n‘,- T AN AT Lt R R o T o PR G .
A T N R O R O R G A

3. REGISTER LEVEL SIMULATOR

A register level simulator was used for the debugging of the microcode and for producing input for
the gatc level simulator. The register level simulator is based directly on the microcode ROM bits. The
ROM bits are compiled into C code which models the behavior of the chip (at the register transfer level).
The result of compiling the ROM is a collection of C functions, onc for each microstate, that is calied by
the main loop of the register level simulator (se¢ Figure 22). The body of the simulator contains code to
simulate memory, instruction prefeiching, and cxternal (host) processing. The simulator also contains code
for statistics gathering, and debugging (single stepping, break pointing, etc.). A very useful feature of the
register level simulator is the ability to produce Quicksim input. This allowed non-trivial programs to be
used for gate level simulation.

A large number of benchmark programs were used for testing the microcode and the chip design.
Many of the programs are standard Prolog benchmarks, others are programs developed as part of the
Aquarius rescarch project at Berkeley, and the remainder arc small programs written specifically for
exercising various staies or branches in the microcode. Becausc of the large number of programs available,
only a small number of them were used 1o generate input for the gate level simulator. This subset of the
benchmarks was carefully chosen o exercise all parts of the datapath and microcode. The fact that the
step-by-step values of the chip registers and interface pins given by both the gaie level and register level
simulators exactly match for this subset indicaies that the register level simulator faithfully simulates the
behavior of the datapath. All other benchmarks were run on the register level simulator and the results
were compared with running these benchmarks on standard Prolog systems (C-prolog and Quintus Prolog).

The gate level simulator used was Quicksim (part of Mentor’s IDEA system). This simulator
requires input specifying the logical values of various points in the chip as a function of time. We were
able to simulate the entire chip by specifying the valucs on input pins (clock, opcode, and memory dat
pins) as a function of time. To run benchmarks on this simulator, the register level simulator was used o
produce the necessary input. An example of the Quicksim input is given in Figure 23. A program was
used to filter the output of Quicksim and produced an output file giving step-by-step values of certain regis-
ters and output pins (sec Figure 24). This output could then be direcily compared with the corresponding
output of the register leve! simulator.

. RS R s ”
G it e i st IV RPUP AT 0P W G I I

P r e T e
e

R
LI I
I4 {': W

7,‘.;5;_-.;.-{-. AR
3 a -
BILELILILIN

S Sn Ay W :':,‘

;
o’

o ’\,s'p:‘\ ° .'
SOV G e

Sy
“S%AhY

@

LA

‘JJ.‘_"_-_A

AR
b

SA

F 3
AN
NN

, .
S @

LA

T,
2

[
L

.
.
~
.

.
2

M N I
TR

.I. . . P

J.. L Py
A |
. .

ll'l'

«

‘9

LSRR
VN RND,
WAL

By)

«
i
o

-

l'l
»
P
.

ALY "‘.‘_'-'

- - ALY L » ".
R VLA PN

e et “w o P N . .
RN A I S S R N T ..

o T N . R SR BT e S e T R S R . .
Wﬂu i RPTRRTOI YL ERE EN '..‘.‘.A,'l. ‘;“.' ‘._,*.J.‘l' VALY "'-.- " .-';'-‘ o --J:'.‘:’ o "’--1'-\-‘\'."-'/-"/'.'.“\."-' e -“I.'.
ol a ahTa e LN R R A T N A e

. w e T . e wL WL WL WL WL W e kﬂw.‘Jﬂ'ﬁ.—y_‘W o,
TSI - A bt W '
608

Aty
A
I

/,‘_3'- W g e —— - e . e - -
. X

“- ."‘ . '.l. A
:z',,-:'.f, 22
XRAN)

oy

0

e

kA7

v

load PLM code

select next microstate .

calculate new uPC

register transfers ::
-
<
memory operations z
output verification data ;
:Z"’:n\
ENES

< &

v

W %

x
e .

;, .

Nl WA
A

8"

x5S
b

»
.
.
A

Fol

@ .
A\
» »

output statistics

l. l’
.l
vy

bl “1

:‘. ';

-'l"fl‘u

R
Fol 4 P
AL ISR
AN NN
l’ l. I.

Figure 22 Biock Diagram of the RTL Simulator 5

O NN LN

| SEAESELY oS o o Tt 0 QL BV gt S ter S A Sat St Rt Syl it e, St oSl St alAiat a0 byt

1
put_list X1
boot00

9 run 100

##H 2 ###

put_list X1
boot01

L run 100

3
put_list X1
init00
b # memread
force MEMDAT O0ffffc00 65
run 100

put_list X1

init01

memread

force MEMDAT O0ffffc10 65
run 100

i #H#4 4 ###

4 FHED AR

put_list X1

init02

memread

force MEMDAT Offfffff 65
f run 100

#HHFOHEH
put_list X1
init03
T # memread
force MEMDAT 0ffffe(0 65
run 100

‘ #EFTHEH
put_list X1
1mitC4
memread
force MEMDAT 00000001 65
run 100

Figure 23

Sample Input to Gate Leve! Simu'ator K]

h.-
i
Y
L
)

¥

\ 4,
P e
]

'y
[
“y

o

"a ‘s
P s
"

"v AC
< ShN

.
e e

B #EH

put_list X1

init05

memread

force MEMDAT 00000020 65

run 100

9 #HE#

put_list X1

init06

memread

force MEMDAT 00001000 65
run 100

#H# 10 ###

put_list X1

init07

memread

force MEMDAT cfffffff 65
run 100

11

put_list X1

init08

memread

force MEMDAT 00040000 65
run 100

#H# 12 #4#

put_Jist X1

init09

memread

force MEMDAT 00080000 65
run 100

#H# 13 #4#

put_list X1

init10

memread

force MEMDAT 00000004 65
run 100

#4414 #44
put_list X1
initll

I AR o W T A F P g
NSRRI 2rrrs A
DN f-,’s\.}'v‘.'.'.'.v

I .:I"'d. i’. -

o« -_
LI g
5 %S P ‘.‘

@ L
AN

FPRIURICTR
X . '\4'\-‘\"“1'& .'f -
WL BT Yy

-

~ . -
P A
I‘»"&‘.‘v'-’
&t

s

#H# 19 ###
put_list X1
reset00

run 100

#E# 20 ###
put_list X1
resetOl

run 100

#up 2l #44
put_hst X1
reset02

f.-*‘.--".,‘.-".“n‘_-‘ "(SRR _\.. ..\ N .

memread
force MEMDAT 0000000f 65

run 100

#H## 15 ###

put_list X1

initl2

memread

force MEMDAT 00000002 65
run 100

16

put_list X1

initl3

memread

force MEMDAT 00000000 65
run 100

#HE VT ###
put_list X1
1nitl4

memread
force MEMDAT fffffffd 65

run 100

18

put_list X1

1nitld

memread

force MEMDAT 000000ff 65
run 100

» - Ly .- .,
M ¥ e w XV Wy AY Wy ¥ 3

-

..........

X oo & o
sy X

!'I‘}

x

Y

S Rl
~
X

o)

Ny
Ty & "';‘ -

? .

L)

Sk

7 4 v
l.‘.'l'l*‘l

'\I‘:
v. t’l l-
A

. x 'c"‘i'::
LA
» v ¥

"I'
'y

e
. ;“c' <

S

»

P

AR

Y
.

s

5§ €« & @ 4
D
458

D@ ',

A

-
B RS
-"i'i-,

it

R r e
PR
e

LB | I.l'l

MUV WS WO NG e P T E R P TR

o I DY I PNV NSV Y,

R
“\‘n'x\
.’1’(‘.‘:“

i Jo 5]
Ty

‘x

»

[
ey

ﬁ
e

run 100

#H## 22 ##H

L # put_list X1
reset03

run 100

#H# 23 ###

put_list X1

b # reset04

prefetch(1)

force OPCODE 00000013 20
force MEMDAT 00000000 35
run 100

, .
P
x

X

i g &

e
Il'

2

#E# 24 ###
put_list X1
put_list00
run 100

®
) ‘l.!"

. <, '; P

N D
s *

HH# 25 ###
put_list X1
unifv_cdr03

NG S

.
prefetch/ 1) 5:
F force OPCODE 00000040 20 gt
force MEMDAT c80000b5 35 e,
run 100 :-"f-
:.I'.-
HHH 20 HHH 3
[# unify_constant a S
r # unify_constant_write00 }.
run 100 ‘o
Y
HAH 2T HAH 2
L # unify_constant a his
unify_constant_write0l LA
prefetch'D o
| force OPCODE 00000040 20 -
‘ force MEMDAT ¢80000b6 35 <
h run 100
| HHH 2R HHHY
: # unifv _constant a
| # ifetch
» run 100
o A e et e o LIl L Ty

d“_. ¢
s
s
-@
]
o
]
"ﬂ,.'?'
ki
#AH 29 ### N
unify_constant b NG
unify_constant_write00 ;"
run 100 Ay
lw "~
K]
#H# 30 ##H By
unify_constant b ',;::
unify_constant_write01l o
prefetcht 1 i
force OPCODE 00000002 20 oy
force MEMDAT ffffffff 35)
run 100 o
W
WA
31 ### | R
unifv_constant b - N
ifetch @,
run 100 : RO
. Sy
#HHED2HEH RN
unify_nil ey
unifyv_nil_write00 ,,?)
prefetch 1 : '
force OPCODE 00000013 20 T
force MEMDAT 00000001 35 | o
run 100 N
L)
HHH I3 HHH o o
unifv_nil) :.13]
unify_nil_write01 ::.:_
run 100 _ vi
2
HHH# 34 HAH o
unify_nil .:-_:'.:
ifetch R
run 100 R
-, <
#HH 35 HAH i
put_list X2 N
put_list00 2
run 100 N
®
HHEH 36 ##H RN
put_list X2 e
unifv_cdr03 :_,
prefetch'D et
\:
e e e e AT AR et et E e e e e e e iy
"IN I SOV I S NI ST AP A S P A L N NN S T e T RS

kXX 1 % * %

boot00

Memdat = Offffc00 MDR = Offffc00 T = I

T1 = fiffffff R = fiffffff H = ffffffff S = fIfffiff
MAR = fifffff N = fiffffff Mode = 2 CC =

Argl = fifffiff Arg2.3 = -1

L X 2 %* % %

boot01

Memdat = ffffffff MDR = Offffc00 T = ffIffff

T1 = ffffffff R = ffffffff H = fiffffff S = fffffff
MAR = Offffc00 N = fiffffff Mode = 2 CC =
Argl = fffffff Arg2.3 = -1

E 2 33 3 % %k %

init00

memread

Memdat = Offffic00 MDR = Offffc00 T = Offffc00

T1 = 0ffffc00 R = fifffftf H = fifffiff S = fIfIf{ff
MAR = Offffc01 N = fiffffff Mode = 2 CC =
Argl = fffffff Arg2.3 = -1

B R¥ 4 % % %

init01

memread

Memdat = Offffic10 MDR = Offffc10 T = 0ffffc00

T1 = 0ffffic00 R = fiffffff H = fiffffff S = fIfffiff
MAR = Offffc02 N = fiffffff Mode = 2 CC =
Argl = fififfff Arg2.3 = -1

L2 5 % % X

init02

memread

Memdat = Offffif MDR = Offfffff T = 0ffffc00

T1 = Offffc00 R = fifffff H = fiffffff S = fIf{ff

MAR = Offffc03 N = fifffifff Mode = 2 CC =
Argl = fififfff Arg2.3 = -1

® N % 6 L E X

init03

memread

Memdat = Offfe00 MDR = Offffe00 T = OffffcCO

T1 = Offffc00 R = fIfff H = fIffffff S = fIfff{ff

MAR = Offffc04 N = fifffiff Mode = 2 CC =
Argl = fIfffiff Arg2_3 = -1

Jioue, 24, Samole. Quipul ot Fate,

N 'f,;z '.-';,',‘:

R 'u"-";" ._'.. Y TS
22 AP e@ Y
2, 4 e 2’ e

L
e

latgr, .o
RS

PR A LA AR PUNTEEERRN |
L, g ll '.l 'I '. L)
ﬁﬁ?ﬁ;ﬁl..ﬁy;},,.*

K
4%,

{ ST,

's

T % % % e " e

e
Eal)

\)3&1

Lard
» '-{\

v ‘r.‘r,r o &

N et

[“at YL Rl L AT A L S AL AR ARAE TR LA AR IEE 1 £ 275 aNa NN

J
%
Rt
3
il‘.-
) A
x % * 18 k%
i initl5
} memread
b Memdat = 000000ff MDR = 000000ff T = Offffc00
| Tl = 0ffffc00 R = fiffffff H = ffffffff S = el
| MAR = Offffcl0 N = fiffffff Mode = 2 CC = 2
| Argl = fIfifffff Arg2.3 = -1
L kax]Q K**
reset00
Memdat = f{ffffff MDR = 000000ff T = Offffc00
T1 = Offffc00 R = 00000000 H = fiffffff S = fIffffff
MAR = Offffci0 N = 00000000 Mode = 2 CC = 0 :
Argl = ffffffff Arg2.3 = -1 ”
b oA
o
L2 X J 20 *® k% ;--.{;’:
reset01 o
newpl 3.-?_';
Memdat = 00000000 MDR = 00000000 T = Offffc00 A
} T1 = Offffc00 R = 00040000 H = fififfiff S = I’ ";'
MAR = Offffc10 N = 00000000 Mode = 2 CC = 0 W

‘t": ':
Py

Argl = fIffffff Arg2_3 = -1

L

-
A

~

v 4

e 23 * %%

-
e

reset04

prefl

instren

lastmi*

Memdat = 00000000 MDR = 00000000 T = 00040000

Tl = 00040000 R = 00001000 H = 00001000 S = 00001000
MAR = 00001000 N = 00000000 Mode = 0 CC = 0
Argl = 00000000 Arg2_3 = -1

22 24 LR X]

put_list00

Memdat = fiffFf MDR = 00001000 T = 00040000

T1 = 00040000 R = 00001000 H = 00001000 S = 00001000
MAR = 00001000 N = 00000000 Mode = 1 CC = 2
) Argl = 00000000 Arg2.3 = -1

T T

LR 2 25 LE 2 4

unify_cdr03
prefl
> instren

R T e A A A e e N et e Pt S v .\.—§
b B 0oy \.Lki.‘ﬁba}efhff'.&iu‘.ﬂ.a\hﬁﬁ"u‘-:.‘rL'\x\.‘x&\l\f&f‘.

N A A W e LA T

L0 o

lastmi*

Memdat = ¢80000b5 MDR = 00001000 T = 00040000

Ti = 00040000 R = 00001000 H = 00001000 S = 00001000
MAR = 00001000 N = 00000000 Mode = 1 CC = 2

Argl = c80000b5 Arg2.3 = -1

L2 2 26 L3 24

unify_constant_write00

Memdat = f{f{fffff MDR = c80000b5 T = 00001000
T1 = 00040000 R = 00001000 H = 00001001 S = 00001000
MAR = 00001000 N = 00000000 Mode = 1 CC = 2

Argl = c80000b5 Arg2_3 = -1

* % % 27 * % X

unify_constant_write0l

prefl

memwrite

instren

Memdat = ¢80000b6 MDR = ¢80000b5 T = 00001000

T1 = 00040000 R = 00001000 H = 00001001 S = 00001000
MAR = 00001000 N = 00000000 Mode = 1 CC = 2

Argl = c80000b6 Arg2_3 = -1

* % % 28 k%

ifetch

lastmi*

Memdat = ¢80000b5 MDR = c80000b5 T = 00040000

T1 = 00040000 R = 00001000 H = 00001001 S = 00001000
MAR = 00001000 N = 00000000 Mode = 1 CC = 2

Argl = c80000b6 Arg2_3 = -1

LE X3 29 * %K

unify_constant_write00

Memdat = fffffff MDR = ¢80000b6 T = 00001001
T1 = 00040000 R = 00001000 H = 00001002 S = 00001000
MAR = 00001000 N = 00000000 Mode = 1 CC = 2

Argl = c80000b6 Arg2.3 = -1

L2 24 30 X%

unify_constant_write01
prefl
memwrite

instren

Memdat = ffffff MDR = c80000b6 T 00001001

T1 = 00040000 R = 00001000 H = 00001002 S = 00001000

WU WL WU Y W WL WU WL UV

b 4. SHEETS OF THE DATA PATH
The data path is in several sheets with the control lines and power connected at the top and bottom.
The buses of the data path are connected to the blocks on the sides. A list of microbits is also given. The
microbits are grouped according to the blocks they control.
‘ Mir Mird Control
Constant RAM:
0 0 contobbus
1 1 paddo .
2 2 paddl : !
+ 3 3 padd2 2
4 4 padd3 '
5 5 memdattocon N
Argl: N A
6 6 prefl
& 7 7 argltorbus A
8 8 arg ltomemdatbus -
Arg23: ox
9 9 pref2 e
10 10 arg2tobbus Byl
11 11 arg3tobbus "
L I
PDL-left and right:
12 12 pdicO
13 13 pdicl -
14 14 pdic2 5
15 15 ramwe .
16 16 ramcs K
P .
17 17 s3 $
18 18 s2 -
19 19 sl :
20 20 sO -
2] 2] m <
F 22 22 cn
R:
23 23 mdrbustor -l
24 24 alubustor BAN
25 Idr RN
b 25 26 riobbus -
26 27 rorbus o
27 28 rtomemdatbus :: :
MDR ,":.,.
28 29 mdrbustomdr |'.,'~). '
b 29 30 alubusiomdr »
30 3 rbustomdr ®
3 32 t1bustomdr e
32 33 tbustomdr 2T
33 34 memdatbustomdr SN
34 35 1dmdr e
) “
9
.:::,..
A AT A e e e e e e e e e

55

56
57

Tl
58
59
60

61
62
63
64

- v

T:
65
66
67

8
b %
70

n
72

73
74
75
76

H:
77

b 78

48
49
50
s
52
53
54
58

56

57
58

67
68

70
71
72
73
74
75
76
77
78
79

80
81

Bus Connector:

ldmdriag
mdrtagsel
mdrtag30
mdrtag3]
otcdr

1cdr0

wcdrl

tcdr2
mdrtomdrbus
mdrtorbus
mdriomemdatbus
mdrtobbus

alubustomar
rbusiomar
t1bustomar
tbustomar

ldmar

marcnten

marup*
martomemdatbus*

diagnostics

tlinbustomemdatbus
memdatbustotlinbus

bbustot]
rbusiot]
tlinbustot1
ldil
npasstl
numvajtl
tliobbus
t1toabus

mdrbustot
bbustot
rbustot
tinbustot
tlinbustot
Idt

tcnten
tup*
npasst
numvalt
ttomdrbus*
ttobbus*
ttoabus*

mdrbustoh
rbustoh

St APl a7 2% 000 4 00 12800 Tad Y

PR PRSP
WA A AN

YA §
ol uly

A

PR A
AR

-,
[

Bttty
NI) :’x,‘;;’"'.f"-éo
'-c.-.--&'

A

P o oW S
waxE
’(

- ..

pya

LA d

x|
Py

[¥)
*
[§

Lgi pt]
S @
L L P

Lot it pih gl

‘@ TS

.

¥

r,
.

PIi S SR T P |
L O N r
Vs
.'v‘- M
A

)
M

LA

S h N
'sf LA
i a4

T ° K
(o SUAEASY b
- w‘ - -, =l hd &

»

4",},;‘,

I
i
{

. N
L P P N, .
PV VL TR S A,

AR B IR SR S 8 AR AL SR LAt AL AL LS RTALSL LA LALE paL GEGAR RGN GE LG L L gt

79 82
83
80 84
81 85
2 86
b 83 87
84 88
S:
85 89
86 90
91
’ 87 92
88 93
89 94
90 95
H2:
91 96
P 92 97
93 98
99
94 100
95 101
96 102
‘ 97 103
N:
98 104
99 105
106
100 107
P 101 108
Register File:
102 109
103 110
104 111
* 105 112
106 113
107 114
108 115
109 116
110 117
} 111 118
112 119
113 120
114 121
115 122
116 123
117 124
)
! Collision Mux:
| 18 125
; 119 126

tinbustoh
Idh

hcnten
hup*
htotlinbus*
htorbus*
hiotinbus*

mdrbustos
bbustos

1ds

scnien
sup*
stomdrbus*
stotlinbus*

mdrbustoh?
rbustoh?2
tlinbustoh?2
1dh2

h2cnten
h2up*
h2twounbus*
h2twtlinbus*

mdrbuston
bbuston
ldn
niotinbus
nwomdrbus

mdrbustoregin
rbustoregin
bbustoregin
Idreg
adselal
adselal
adselb0
adselbl
regsclal0
regscla0l
regsela02
regselb00
regselb0]
regselb02
regiotinbus
regtotlinbus

setcollision
collision If zero then select TIINBUS else TINBUS

*
b

Ty Ry
Pl

-
i\ 7
»

«

. 3
R o
‘-1 * i

..,..
AIL R
b Fa)

Ky
.

AR
Pd J

5% %
" (
7 b

ALY
V)

;{}f} PR
P

Microscquencer:

120 127 pencUr Usually one, i.e. load curp.
121 128 Idurp
Psclect:

122 129 petl0
123 130 peill
124 131 petl2
125 132 peil3
126 133 unxad8
127 134 unxad?7
Subroutine ROM:

128 135 forcead0
129 136 forceadl
130 137 forcead2
131 138 unxad6é
132 139 unxad$
133 140 unxad4
134 141 unxad3
135 142 unxad2
136 143 unxadl
137 144 unxad0
Microprogramcounter Select:

138 145 mctld
139 146 mctl3
140 147 mctl2
141 148 mctll
142 149 mctl0
143 150 subrmux
144 151 uldarg
145 152 Idmode
146 153 mode
147 154 ldcuim
148 155 cut
Interface Signals:

149 156 newpl*
150 157 newp2*
151 158 wait

152 159 dspace
153 160 lastmi*
154 161 fail*
155 162 memrcad®
156 163 memwritc®
157 164 externalfu*
158 165 ttotlinbus*

159 166 parity

If zero then wp else curp

A T

e
- >
’,

"
[y

10

a I 4
Nun

SNy
55

*x s Y M 2 132 1)
R g A
LY ‘.‘.‘. y 'l.,‘v '\T.

h]
«
by

-y 2 e
Lo

i
it
3

Nty tr]
. r"'l.l'

iy
w

o

Ne's
.

.......

P IR ?, NN we h ool PR . AP .
RARAAP R ..f.....-r NN Tk AP ..\\ T o
......\.....x._O:........rx.c.u..,.._........... PV,..f,. LS AN . Ay w..u. s ...: .\......) O..:.. A.nq..
. RPLrLG Y W ATV B O R NL-.;- PSRN L | \ YN N \\\\\\\\ ; .2-\\\\-
L
.- (L8]
s
-
s’ [
' . [
L ,- | w ot [
.) ~ 1)
3 - v g 1|A“_—H.b.w:IL
! y— ORI _‘_ - U JSund l.AuO mwcll
\..:,___._r R INRUEIL] CH) . n
5 (U0 THG —— (9)yuiu S o
- a o o
@ m P
o oo
g Y [B
. L— .
; O m 1 |
X = e N L
.. [a} *m
£ o M AT
o O “la n
—_ QO Yy "
h L =~ 01y s
E ln.u.... L) L _va Q
O m .-‘_ .wu.
: HVu 3 o
: W..w |
P
-
b A
3 R RN O e L ORIIRT RS (1 o g
Y AR 0 ol
3 IR I I . i
. (2Nt o =% N “ . .
by I TR =4 e Y17 avong P l/\u__ JLUHJ
. (0081 Wer——gainas . Co L w7asuws ——<JAGTIU IHd
o _y wr) 3
v‘- . \‘ —
: | y
Fx i
il
y
.) ! ‘v
i o AN Q-
-
,.0“ ;w :n
n (1R}
: n "
;)
. >
: 2

PO,

s

DN

Su B

a

)

- ,\ J‘.'-"* ’\ "- J'\ ‘F‘\ '\r‘- I~f

I I A

RCACAS

.'D

NN

L »

P -

@l]

g ‘ .I\" A iu {
R i O IRYNCREE ,.ﬁ...r.u.m.«.n..v......m
el RS AN SRSy,

.-...-‘, ‘,,
..x.. s\s..\...
o PR trkr ot PYES f...ﬂ. ..A‘r\\......
A2 e Oy .ﬂ.~’..~......
S LS AN

Tl ey

SR e
o LA b | — = St b il ...J
« G | s g e 0 U " S
m o | fatuy Wy j—===1 1 1Jduu g W 6w w ‘.
" o 2 T wsuuy wa F-——H U1 8UY 104 bz £ o
(III0ATH €15 3ua wloJ 17 sauns <11 T IS UH oWl A e
(STI0YIH O——inua - A 87 asund U7 A5UHY NOA A A Os
S0 ARAIY ;
| L \
_ - — SN — ”
5 (R I TV T p— T ’,
E Twoe B v,
- Lo EIUU LWL s ~—— 7 R,
g 22 o8
e (v1IUYIHC- o o Q0
— X8 — P
o (9108 HEsg—ot% - — uf
“ « () E——<l73ISuHd X
m - (Y] 1. a .\
5 (s1108Me—o1% & 0 %
b= o * -.‘
| \ _\
ﬁ“-’ -
(S1I08IHC——ss a5 T Lauin g | ————~Jt £ JJUU U " o
(SDIOYIHo—— muw 3 & | e [=0 2180004 v, ..
- £ 49 gy fauuu e | ————20t 1 MU Il d a s
o S vsuvu g F———1 0 130U 10d ~ 2
« N_ g D 1 asung A1 _JUUHY
a) o dstng U dSBHJ
x —

[t8]

(.7.......&.*.1.., . : o

AL, nu
4 PR e ’ x..\. ot RO X RAAPSS
L
b
W
3 ~
, 0
«© hJ
: o z
ul
r\ 0 ul -
; n D 0 5
v [t
[‘ ‘
o w m v o
w D m < ¢ 11
— - DT N
Voo arve = ot U e an
My Moo O T X anan
...4_.:_J/._,. ‘A,‘,_ _J [J
‘ .. LR _ -
D) | 0B 1U0NIHG 1abu 1 sk

ANNUUH<CT—1 N0
JA0HUHCTFI— 1A0

g —— =
r_—-—cHZ)Galu
)

— 4
—-u

e nT3SuNd
R
2
c
$33303
5T
A AN -]

s 2P R e (01215081
- A 2 ~ T .2 \Aw n
. Thmk il hia h . .o.R;:m:ﬂ
2 re " 3L%%4 (I
P ° B E Nz (91,215N9Y
. L & " YU s e isonan P10 1€ 1SNB1YOHIH m
NOJSNY b (U IEISNEIHOH I ——&0 1£15N91H0W I 10+£215080 1

grsnanttit

. "na2i
el GV JE NSNS RIS 180161908 snim I fT F 10:L21SNOYUK |||k,__o L2 1SNAAYH .)
2 A L - = xn An.l-.-
A 3 iy e 1snAIe0nN3n 7“ _ > 2 @ 2 ¢
w K] X B o, w @
¢ a D [~ 0d - - .-
i 2 n r a a ° o a
3 1 < —] z x X W
ﬁ b m bV n D 1
N «a el z L) L] . °
] 3 =
—f—jt D D D S
~ o My x T I 4 ¢+ % X ZF
C < N T T T T | n Do
2 1] 47t C) C 3 m onopn
0T ¢ a0z =z <00 s Jou
w-, uoosnqg oo _..u Z « M m on a\. 3 e
7‘@ - < mon " a : ~ — : _
m R T T x 2T ¥ X X
_ o o U p v VD
= = a O OD DD OO
v..v e gy —_ — — ~— — — —_—
¢ 0 0 ! T I N, B T T B
() w I 1 X T -+ %2 how N — O O
- -— DD D C e bbb X > 2 - - -
0] 93] T M Q2 < S 7 0 U
CC = 7z < m T 2Dy
~ @ tol MM <3
— — (YO T umn
OO —
- - < N
a-- M Pes)

Ln, FRE RV RV E VLV ROV AT AU RS LA LS .0

WV B W T WO OO RO

R Y M M DA s s bt e i s e o g o g
i
© - ,f-.'....
zsg s
g =L
-
£ X
£ & £
-
{ES!)UH!H@-——QESHDH)H g Sz
(EYI0Y I WES>———28c0 = IPEELE N nummman 4
(2)08 I WES——1u00s 8285
(1%)O&INE ¥3J4 g‘ !;' g SNBiYIWIWCLY¥ON —-—‘9(’g\v)081"-:
(07)081“%80319 :| 5’ ._l SABECLHON -——-el:?)ﬂ&lk:
[6E 108N 1€081¥0~ £ & % SNBEC.L A0 -————efL')U\dzk‘
(BEI0YIWGS DEOHI NI ¥ (Y~ Snewduc.uds — (PP) 0d]W
LLEVOSIWE= 3500, 8w

(SE 108 WSE——{grinouzn R inctieTwow 157 y0w
(SE Qe] WES——— §ous™ 2400702 ¥0m >0 80
(¥ E) Gs 1 W S ————{ ¥0u 06N LMK

M

Snctezwos {627 40w
[EEIQN I NC———uuoiste. oz ™ an eind
= = z
(CEICUIHE——swousne, © _ 2 T 2 = _ = gyouly P——au0nt
(TEID2I WS ——uousney Z2 R 22228
- - = - - -)
{0E 108 I HE—fstisninwyy © § 2 ;, PR e T -——<31_33t:—<¢
{82108] hEr———praucsibune :.g -4 2! 2 % & 35me F———<30 ISHRe
JEEEEEE
Ppo® ®BO®O O
s o0 o (T eu e = 2
—e— L e = = —
mPON Smo oo
PP~ O DD
S3Z ¢332 2D
DECD IEDED T
MDD O =~ —
=] - - @
k = [= QEp] =]
<3 £
(™)
g
(673 TwE SNE.EIWINTLY c
LI TnE SNB¥l.r T = =
(e2.C¥lnz snescay 2228 [y &
(Sl I WS~ u2n Z Tz z _
(ve JGC":“’S'—“——W:;SHE“'ME z §'| 7 En 17350m¢ 1 3G c
LT/ = = - - -
(E2]GG;K\‘:J—‘_'—'PQ‘EF.G‘;UH'E € >a £ 6" 350me b 383rc EN
Eaed o T -'.:":'
NN {_-_:
7 o 7l
LA
| et
_ - - - - !
ccecc c iyl
) -
OreC ¢
TEEE 3
A= -~
e & :
% £
(7]
<
(22100 WS o5 _'___)
(12108 hES——
{02108] WSr—m— o2
(ETICK I RS ——— 1§ 5 -235- G:
(el]oﬁlu(—-‘é:] < iEE'—EE 82,0 9™ 0w
(L1108 wES £s MRS AR 3 —Lp3™n b
& - JSooa <
L NN LN |
) m
< cc < N
- o .
- - - R
[V v '-. LS
O e e e RN AN I AN -? ’?-r /?'.r "':-\t
A A A A A A L A AT o "o LY - an AT A T ANa Col, A Ay
M o Z T N N NI I N A TN AR T A

v T AT RN * 6.8 WA R o 4y o ‘.-- . m
o
: ocom
~2%5m 3
SmEr A= =2 <5
P EE
BETTCT A
? o ¢
BRIV
Rria:ii 33 |
o 08 NS R R F 5D TR
222 3 I ummue.D——S 53 la
‘SL‘G:I“‘\S———!LSSGdN = é ?-;: g 3 .nnmua.l = 3 8. W
o ’ - fT AT
(VLacaIues————d “anl 23 B o Sule o2
('-/-)03"-"'9————“~2 N3L g z ‘5'9=°‘AF—'——\—/:fEL Czinm
L ZL)CY I HES— 100 — rneEnp——S 3. Celn
. - - : = . ——l t :
(CLIQYIn=S Lov8ENT S ? - _ gmilmet — LL . Caim
m - [~3 -
(B9 108 NES>———,c13ngy 2 = o = Z.
| 2 - - e} -
{89)G&IN@————SLO,SWG % :; ; g ; o
. S P o
(L910Y] HE—i0r8700u E % é ’E'L/E j»———-——GL 3SEHd
S o o o ¢
A& m o - om
> » 0 2 D
D 2 D 2 2
@m-© O © D
ge® & T Z
| 2 —
& -
2
©
DET L —>0e7 0L
(59108 HE——— sravouts ol I Sy
(53!081&49———- -1 [88 i
“’9’031“@———] LITARON
63108t eeam 3
{28 10¥ I UE— 10 S 22° =
(19108 [HE—uasnemiuZ S 77 2 L
(09108 HE—— tiousnes & B 2 5 o 173seHe 1 _3StHd
(65108 HE>— tioisnee & & 8 0 = o73swme <07 35cHd
[c - ~
: T T
o5 oo o
- mmm ™
- wo®n ©
g 855 2
o o @ D m
-

-“

LR

o
-

T T
5%
PP s

&

o S T T
XAy
l‘ ‘ls.l""

e
?
v

'
by
L

5

x;

LR

\
v

d
¢
|
¢

T

W w0

“l

~

TWATR WA TR TN PN OO O OO 30 W,

.
b

|
|

ENII;°‘5C

INNCF—
JNOS -~

A

totiE 1anaNi Tl —

NN
ELY]

.
.
sl

avigisnangil

1O01E)ISNBYUOH -

08 (€ 1IN0 SNANAY

W el s

J..., .).\ 2
X I , . J

|
-~

-~ -

7L 2P
SN

A
-l

PRSI

CIEIFOINETSHENOY |

1e1€8N099

\

/—=011£15n68

x

=]
@ 0
bt o
I -
w o
- -
aQ o
w ur

—
w

" —_—
N

A

£
(68iCea

(01 1EISNANTTL =0 1EI5NONITL

01 1€ 15Nna8 —= (011€14NCTSNAY

-0t 1E1SNByaH 01 1€ 1INO"SNANT L

(GtIEISNANIL A

(QsLEINLTCNANTL
(QtIEIN]"SNAY m\ll. gsie 1snay
= gt {E)SNBAQH

H

D - P
S P ~v i PEd R s
P N.\ \ \ g &r\ A re o' - J J .
&.m._.. N @ ats RS .'.\w...\..v.\.. -, O s -V..\..x.\& [
z Tt
0 00 -0
,ua_ O oy T
Y 3] x
w D oM w
(n ® 9m m
| == Y
¥ O 00 Aﬂ
Jm.;:._;_ - Trox 1 1 #arj
o o e
ANNH<—— N0 .m m w
JAOH<D——] 440 § ¢ 2
G H
L]

10t VE ISNANON

10t [EISNBNIL

— x
= Q
£ 232
S c & g
4 - w
1 L ¢ A=
: 13 o
s P X T % x| weran
€ 3T X X X X
- . a4 ->-4 - — ~—
b= 1 = + IR v UV
W o 0O o Q9
Q) o @ (0 O @
n & oW N — O
[brh ?P A

..\ vm.H .\

e e

I NI IV I A I

Y

-
.

"

e

ey, P o, et ’ A i N N B NN

. PR A G A AAPR A NI a... Fm ARR AR XA
b QP S, @S e @ s PN ...«r .\.\...:_. O s ® :

. a..u...... X‘. > a.,...f.., SNNRENES ..s..‘.......,ax 0«,a.a M NN O R AP ... I v..:.., b

D PORBUS:II.G:

(901108 THC SNBUUMBIN 5 m .
:.D— JOYTHC 33— snumtaoaw 5 _ w
(9011081 HC N1 28— _.
(SO 108G NOISNEE ! B G L 1 luukd U_l'_,.._c:c
(vO1 10y W ¥OISNGNOM 9 M m_ ..w. U™ ISuHY <JUJ 3SUHd
PE -
[4
N |
- _ - P.'a_
r:‘L [o
-a o ..o
e, -1 Ve .
I m o«) [} o b
A A
-J..m“ o et ..w._ ~ (3
e @ - = X
o
DB = - - @J
h = r—
|11
oy 83
(13
0.. I
(10 1QY THG——suncn P .
(D01)08 Hes— (N & it ULIIELH
: - ST NJINJEH
(66081 WE: é 1 - R e A
“9—e—— cHU - B
(YL 10 T HED——worgnantts
(L6)10 HED——norsnes “
(96 10U IHED——norsnaaun 3 « a 1l Jsund
PN

- S
ER
M m .HD
oy Ll Ul
vy Y
a2) m
M @ 7
X o =
(9]
= —

T AT AT AL A A

o)

"\‘f " T

L
1)
&

L ‘-’\f’-f'

"'y,

I.'

AP 4

l\".' A

ARG

20

R - B g - -
*‘M.‘-) '3 v’ 4 TR LA A -u-ﬁ.‘;!-- \.\

.... ARSI @r PP A At o e Z M
. hESI p—f ..Ju.&. ~Wu.ﬂv _..r.,.x,....\..... y @ ?....ﬁuM L IR ..u.......;ﬂ \..\N-f\n. o) o ._.......\..x..xa 7 .O.x. 2 \vafﬁ. .O v

.

.'\
"
N

_. .-fw. .xN\&\\ 1’4l 227 I N2 LA A [AN JJ.... i LR A A Ay PR rvr(f\r\u
] ‘A
3 : 7
.Vu [®) .!'\‘
3 . W
2 o v

N oltd 50 of

ToF
g

b b X
X 13 B S T s § < 4
, NN S R, Vet s b o D V.r
1) DOV NMD 1I.UVY 5
. ()EICItL)E)t) D s— 9]
R (R T K
ﬂ-. e [fx f-w
N _ . PIEIR) e e e ()
: ﬁ‘_ ﬁ S ENEE NG fI— W@ e Ry
. I i

lg 29y -————Cl 022.20 =Xy
g P———xC 1032
AN

“ n
DRPOODT, o

dxe~ 9 _~DONI~L 177 ._.‘h—ll.._Du %ﬁ
Pl
—_— e (R T A e ! 111 | | N
Am;.~.\..m\~LA aeerrezig n ® VD x W AT W D -A
DLt 02800031323 kX
L R J———=ner 206008 (0:1)OHL == g S AdAngAaAnS= 5N
(0108101 <4 w2222 922 .

LB N

B o N - 2 B rsnd wTit W|.a.;_m:mz_:.r

1 4si-reas uqﬁmwdﬁa§w|;?;§§:
. fouie 15na~y (031€15N8y

to11€18n878 G— {otieisngg

n
m g
_ g o wuieisia wan <= (g € ISNEHAH
XKW ST 1109 ER- TR & o
. ? : Sag20gnaE s
AR EEEREE
o Wo23r803 1A
(e1eL2)rnsng l___ n_" s & .
LEVT L2 19—
CETVLZMNT L] — - <3tETILZIshant
- e {1 3Pe
; (FLacasnanNt “JE11LZ 1SNANT L i 1
\ XX It 4 I i 4
LA7MOIST10)] MMMﬂmamwmm
- — R} =z
] crumv g oo QUDUOOUO9o0
M e 2D S
DN WNO— PO
3 1a4996x4
a w3204 ——<J0¥3270d
- o O.._ﬁ_.mavlo\ 8104 4A0 A ING l’Om)Q A3Nd
07 ISHHd IIOQIMWQZL
{0121 29YHXH S T (gaz 120m0ay 10121703y [——=<]1 0821 200Y
1021 194HXHC =] 1032 1190y (81211348 B2 11044
L -
W4O8HXY
F - —a A A il

RPN VTR W ™ OO O T VR R Y X LA s N Ve W] ") AW VT Y
L stoticbuse
TINBUS(31:0: E-1h B0.
STRTIC_BUS
s 0 -
MDRBUS(31:C A _
nee N
__LD.|__E—‘ w Z
s - W
P Glbiicbust———-ﬁ g E E
5E8
| o E_1N B_D.T i
T1INBUSI31:0) e | R T
RBUS(31:C o e
134 e < -
b s - =
[1=} ©
steticbucs E z l
._____1 |
TIBUSI31:D) EIN E—°-“ MEMDRTBLUE! 3;:0) —falb s_TA.-'
_ o STATIC.B.E . MDETRTICE.C
BBUS!31:T: T RBUS(31:0) —— e
przct [l _PnesE_C)
PH=3Z_D &
ecmr
. , R 2
COLLIS_E)\F’D_—IC‘--I‘-E>
EXCEFT —T>FxCEPT
l e e A
T ———— T_CvF F N4
TO\'!’ _ F i [' CuTw N T
HO Yy E > F_OVF o —Te e
s - (U] ™ N
HOOVF>—— HZ_OVF 2 5 5 &
-— Ao kol - -t
’ SoVF—— 50 Z = 5 MII—owers
hs ~ LT p:.TH ﬁ‘\:EE EE
AR HV\,:>————[A==
—
) MIRD(ISS)=
MIRD(154)&=
MIRD(153)&
MIRDI 1572 /&
R A T A A L L AV A S AR AU IRA

TR Y
L
Ay 4

.'

L

N

RAEAA

S%&;-fi

5
'’
ALy

TR

7.2,

,
5

- é‘

)
Ay
)

5
I

'?3?
2

iﬁ;'

PR

¥

b

~ et
1
.

:’ .n'.)

s

s
o,
« l'l .

s %o
f.:
.

A
L)

.
U

e
t']

a
a

.
Lo YN
Py,
NS

9 .'('.-sr.‘r .
L@ RS
- & [§

B T e

(,-.".*-'-{J!
vy i@

?3;??)%

?Qxﬂ
’I
'I

L4
. 4

T TTTOmC ANt AN WY WO W VWLV ﬁ"'.’\‘ﬂW!'.’?-'f.‘V.an'.'V:V'.V.V MNINS " g% 00® Sn* he® b a¥ Aut ot g \ata®
...... HaEd TR A AR 0a0 Jia® S e gt 4

| -

??ﬁég
Shik

4 []
e

—r—
(AR s
" 'I. »

PHASE_D&=>
PHRSE_1&>

FOR 1 3 C 70 &

= RR020 1) = EYCEFRT
C—=C0Tr

, -G Ma0E
- S PREV_CVT

L E>—C—3FD'3_[.
T_31————=7151)
T_30————-"= 7057
11 31 ———-=7:3 "

t
r

RS
)
rm
.

[¥al
—

-n
c>
"
—

.
~
—
(@]
r~o
]

1 X T 27
o o | T1_ 30 —+——=T1 ¢

[N

= iRt st - Nl

o \ ST e~~~ = Py)

| (S RE S % MDR_3C>———— 08 20
! DCooeo o '-\h
MOR_ 2>+ 0% o .

POLOVF Dt

-0
t

11

1
Ll
st
PR

‘ FOLUNF o———+{(= ¢

b
L

1]

3

- ‘1 “-

Yy
pd

%
. "N
n
0N
]
(]
hi
‘,"!'

RLU_CCIOY T —+—— =" S0

> T1 110 201 ; -~ - .
S - w7
IR | ALU_CCIDD———& 5l 1.
- et A e

- -— :‘w..‘:

- MEVIRTEUS () oA

(4

-

o

L

LA
h

I
”

l‘ljf\{(ff
P4
h'g

A%

'-

<@

1'.‘

3\
| | ".n:::
N I R N N N T S S >
I PPN AT N P NI AT -‘._J'.:f"f:'-'.h-l'."f\.-".-"-'"-"'4-" AN AT N N e e e e e o e s _"'vr

., N Y A A g T P A L Y

oA N TN TR TR YKL UYL W VY UYWLV

p

§. SHEETS OF THE MICROSEQUENCER

The top level sheet of the microsequencer is enclosed along with the details of the micropage select
logic and next microprogramcounter select logic. The logic equations are derived from a C program.

§.1. PAGE SELECT

b The logic for this unit is given by the C program shown below.
psel(P, pl, p2,p3.p4)
L int P,p1,p2.p3.p4

{
switch(P)
{ case O:return(pl):
case 1:if(cc=1)return(pl); /* cond < */
else return{ p2).
case 2:if(cc==2)retun(pl); /* cond=="*/
h else return(p2): : ,
case 3:if(cc!=0)retum(pl); /* cond<=*/
else retumn(p2);
case 4:if(XY) return(pl);
else return(p2);
case S:if(MDR & tcdr) retum(pt);
i else return(p2);
case 6:if(mode == read) return(pl);
else retumn(p2):
case 7:f(PDL == 0)retun(pl),
else return(p2).
casc 8: switch(type(T)}
{ case tvar: return(pl)
P case istr
case lcon :
case tst : returmn(p2); };
case 9: switch(type(T))
{ case tvar: return(p1).
case Ust : return(p2);

case lcon :
case tstr : return(p3);)i
case 10 ; switch(type(T))

{ casc tvar: return(pl)
case tstr : return(p2);
casc tcon :
case st : return(p3);)

% case 11 : switch(type(T))

{ case tcon : return(pl),
case tvar : return{ p2);
case Ust : return(p3);
case tstr : return(pd); J:

case 12 : switch(type(T))

{ case tcon : return(pl),
case tstr
case tvar
case tst : return(p2) |

case 13 :if((type(T) ==tvar) && (type(T1) == tvar)]
{ if(cc==1)reun(p2).
else return(pl);)

T

I I N R A R R R R R R
A s A S T e e T S
- A

rd

%

o

cy 2 5 =
o f“l\ls
l'l',_’

SN
P

\L'

e A% 04
2,5 ay
oS i’

x
[

v r
., .
-

(g
7
h

« ",

-

SRS ALACAEA
¢ AL,
".'(':(': * 'r{ ’ 5

N
oA
P

" hG "

»

A

i g g g WO X T X g - w - . n Py XK - v > . P X e i s > > d ¥ L
X N Ly £ » - -df-d-. ¢ \ﬂlﬁ-\ e X o ‘--.---v.-.- 3 2 gl v LI - R SR \~ [T R
P @ L e .NM.N.‘..}.,..\...._{,”\u.n.,}z.. v .«an..». NS e G2 .ﬂ...v @, 4N\¢mhw.o ..’ ..\..\...s.\.“....\... O e ﬁm. Ll oL
LA EPLP L L.) ¢ 3 L o . x D) Y Ay e el m ’
AT LR B R A A A N T VA (M s S O A A A A A R T : RNE Ry BN
A 2
] A Y
! 3
;
L
.
7
'4
4
nl
r
.
1
-
.M
F]
L]
.
.h
3
-4-
F,
2 2
"] \).arD_.
1 i~
" mm
,- 38
1 h AN Iy
b =3 ~
- -~
ST ¥
- N E
P ~ 2
: a =t 2
) m m;l rm
- m -~ Z
; 2 23 is
PSR,
by 8 g~ PR
> 8 oo
. - O —_ T A
] 1l 8z P2 £ <
. izt 8% 3 g~
= ~=a =2 Eg 3
P ~ pm (=X — N
- W(R -t
- w m. m -)
.ﬁ,m "5 m i
- — =TT e m
> .- -lmﬂu - F.h o
h e 287 o
BOr BTN =
- Ll - =]
(%3 (.93 [x]
»] 73 —
: 3 8 3
-
-
-

»\ \‘\...

-.J...;- NS

xx\.\\\.\.

wi

n-.v.. N\..-..n p .../.4-
= .\ap.. P‘ ot ..c.a\,..,.......x.... ...\.w..ﬁu

\N.\-> A S SN ol \\\

4

RN a
.. o n -\f\.'.

(T30 R RO Y 55

W UYL MR W W W ATORTOVUTU A S

NSO

n~
1 N |
I ., U
K 4
(Tt
1 : ol
; yoo
i . sl
~ H
. e ey
" RN] |
I _ !
r - _ ,«L,u J_
i]

— e ¢ Tgatie

N S W

T W

-]

v
Plal-3 «n
e I B I L T R .c.m.:.:ai_*) «g_r.u.m;...ax
| ! ! “A A oA e
A oo atov ey -
’ - (L1188
n _ - Ma _ T *
v e ‘....:DKOL ~ee
- . «3 1 : al:L ; l?l‘l.l A
ﬁl— . -m:)cokx_ ' J1an
) P S ﬂﬁ\: »_ _.f P e ; lee l._
\ 3) _ * | R _m.wlllO?.!.
RTIEIE SRS o WL O.) B | (SIS e Bt
' P _ |
. el i - .n:... fiiy w]1Bag == (9tg)Ivl10ay
L _ B T e -
R L CLace s L 3T Tanggan * e
a.lc.L «d >~.\ - -Liﬁﬂ!.bl
y T ead -« 80P _ dun jae 't
LT L T T TT T T e T4 1}
e g L3 “itven ——
Lo ~ 1 24PV - -~
o e <3144 bee~apodd0
| _ -) ——————) epe— ——— s e e D1 R W] PP 0300
U ‘WD RS i L:h\‘\J TR ELD [- e D
I * _
!] - -
i visieg _~ T
ol -
| U | [
“_ | cvver” w108 ’ e ddaind
: _v-\m.:vij: 0€s
t
,_ N e I-r|'a—‘.
Llinegeey .
| “ A
; waier BCHANE
: rlA.T_f_sa._;:.: uao:_?l
, -.:n. EE
{ . o) g ®e
H = ST T T T
|
ot ..'m B ILIWEr' | _ QL
wret
teseis
1e8010 1w
T Ry ey _ .
| PR EA N T R e
! _ St
N b [TDIT Lo NS ! dogveres
_ .HL:.H..; L)k Panuny * f.\lW"_lb.:l
“) Mﬂ.__ - " : T T Qe
. - S —— 5
vt FA.._Q ! X Lgretingy -
[posso.pp 1B IS T——] oen m] -—Qr et i
oo ~ +eq 1L10EaAn " ieea ® 2
t | —_ o
R il —
v 18 12PrY =Nt 101 3§ Py et s ey
S L1 PNy
SN
* <
. A
L}

M. a -

NG

AN ¢

o,

fa NS
..'_{\".’A_ .

f'_-"

C AT UGS RA Bt 08 1.0 08 0. Ty.0 Tl g 0.0 o g i

3 potl s

]t
]

< pot! 2

J

184
<l
&

:;1 r‘<’ petlt

ey |

- potl®

ol]

1983
& cctl> D———-——-—%f

1064
eccl>» D— =
N D— v
(1]
DR <25 —P>
node >
” w2 it
2 et
S o
U
—.j] 5\;.b~
T —l
T¢3: . Py
ta.;/;-
2.
J:L‘I\
—
T<36. '

g .
prch

TSE | tm:‘

bl S i

N TL —_‘-_'.

L .
U
)
2086

p—— R11 2 50 L]

R K11 LTI TR

s
¥

U o

AL Y
PRl i 2 i

»
.
-

.y ERY) R R R o T R Iy ol . g

.....

5.2. MICROPROGRAMCOUNTER SELECT
The logic for this unit is given by the C program shown brlow.

msel(M, m1, m2, m3, md)
int M,ml.m2m3,m4d;

switch(M)
{ case O:return(ml),
case 1:return(m4),
case 2:if(MDR & cutm) return(m1);
else retumn(m4);
case 3:if((cc!=2) && (vwpe(T) == tvar)) return(m3);
else return(m2);
case 4:if(cc==2)retum(m3),
else retum(ml);
/* casc S:*/
casc 41 :if(cc == 2) retumn(md);
else retum(ml);,
/* casec 6:%/
casc S:if(cc==2)retum(m3),
else return(m4);
/* case 7:%/
/* NOTE: m2 really means m1 */
case 6:(MDK & tcdr) retum(m3);
else return(m2),
/* casc B:*/
casc 7 :if((MDR&dn)& & ((typc(MDR)!=tvar)& & (type(MDR)!=ust)))
return(m3);
else retum(ml),
/* case 9:%/
/* NOTE: m2 really means m1l */
case 71 :if((type(MDR) ==tvar) && '(MDR&cdr)) return(m3);
else returm(m2);
/* case 10:*/
/* NOTE: m2 really means ml */
case 72:if((type(T) ==1var) && (MDR&!cdr)) return(m3);
else retum(m2),
/* case 11:%/
casc 8:if((MDR&tcdr) && (type(MDR) !'= tvar))
return(m3);
else return{ m2);
/* case 12:%/
case 9:if(cc'=0)reurn{ m2),
else retun(ml);
/* case 13:*/
case 10 : retum(m3);
/* casc 14:%/
/* NOTE: m2 rcally means m1 */
casc 11 : if(type(AX[0]) == tvar) return(m3);
else return(m2);
/* casc 15:%/
/* NOTE: m2 rrally means ml */
case 12 1 if(type(AX{argl)) == tvar) return(m3);
elsc return(m2),

e - o ;o
A ANy .‘:._-.\n AR \»:_ LA

LY YN L

AT W
-

3
»
.
»
.
v
.
.
.
T
.
v
'
3
‘e Yy

LA SR

-
= %
[

[

29 Ah
e
APt f.“

Pl

O TR LA
b - e L
AL e

b

."‘-‘.] ..- .'(.
Ve,

i

S5

4
1

. ..." ..
a2

, .
Ve
P

v s
saan
CoLs

P
.

A)
el
L |

D

PPIE S AR
2L AP
oAl

.
,
-
.
LI I
L.

P
B ORI

PP IR Y BRI \
."'l 'I 'l 'l‘ .I " -

Sy s W L
’,f-""'.‘.'.' ERARARS

.:'.. g

vy e,
etatet.
»

/

e I

oy e’
L)
X A

..
.
.
1@
'

~ \':\':'.':\'.\"\". LN NN -',.-' EE A I

'S

B %
L

ROl

AR N 0 al » g s R

/* case 16:%*/
/* NOTE: m2 really means m} */
case 121 : if(type(AX[arg2)) == tvar) return(m3);
else return(m2);
/* case 17:%/
/* NOTE: m2 really means m1 */
case 122 : if(type(MDR) == tvar) return(m3);
else return(m2);
/* case 18:*/
case 13 : if(type(T) '=type(T1)) return(m3),
else return(m1),
/* case 19:%*/
case 14 :if(cc '=2) return(m3);
else if(PDL == 0) return{ m4);
else return(m1),
/* case 20:*/
casc 15 : return{ m2);
default s return(-1); };)

AT S ".'r" NET I M NN I T f".n“‘e"'.-"a-“'
» P » N i ' N R A »

FIARAEY

.

<

< .f:.{'","f‘) w \ -* f.,.:‘. -.. -* WY n-_-v.‘-:._ :

Y . g .I \
\I:\w’:? v
227

l‘d.' w,

‘- . 4
AR
NN

A
"

r‘fff
‘s
A
.

l1 . >
o 5

£

g—(

&{.ﬂ;::.

%

<

. XX
.gf

¥l
"' l-'

.
.
s

&y

A

.
l.' ~

A
L] '.-"n'
l‘ (AT

=

LA

RS
'

-_"
b .
RSO
LESLI
oL

A
4070,
’,. e L] ’I

P PP IR o 2
PR YAES
@ 1
W

-t (4} ml'li‘ "tN'l .
'T_"‘L oG,

n 7 "3 \f\fﬂn
YEFEYEV Y e N

R(251 = —
culn ppom ({I}) m-—_—
ccl11o—P- ’ ; : '
—1s32
B %

HEL

3
3

.

»

i
g
o

;
E

r

l.‘
.

o
M
YSAMNNA

F

HDR(301 i

DR(31)

A

Lo ol

-
~
-
[,
~-

Y
J

A

LAY
‘
P
1

Y

LA
."‘I

P

g
[
:)

"'.\. 3

i

“e

cclole —>

,_.
Ny
WX
R

l.{“‘-l

[4

\ .'.‘\"""!

-

Ti(31 10—
110301 v
POLO-) .
80 "6 ﬂ:(\

o W e

. . e AT N TR W ,
“.‘A“'.JL RFLIL I ",.A-‘\i"lt':u\‘;'ii‘l‘c\ﬁnﬂ_\ i

6. TIMING DIAGRAMS

The chip has several interface signals o assist system designers. Timing diagrams are included
show the interaction between these signals and the external environment. Interfacing the chip to a cache or
a standard bus require an understanding of these timing diagrams. Since the program counter for the
VLSI-PLM is not on chip. any interface to the chip must contain a program counter and logic to do instruc-
tion prefeiching and partial decoding.

"l'i‘:g:c :

5

e
o

TR
S
) ..
G

o
1“(.

-

x
L r

)

Xl
l. y
A

e 3
& .'\.’:7

¥

oy
o,
ey
th

)

/

WY PN
o 7
e

A
9

'y
o

1y
ALY

o
Ay

3
-

ERERRY,
’
AG' A. l' a2
' L4
¢ Al

K AP wX
-y

*e
)
-
.
(s
’
Ay

O
P Sld
o 4 55

v e s W A AN VN
K e

"r*";‘fif

J.&f AP

3

>
s

A

,\"' ".";
AN Ny

e A®
"r\."r '\',‘

s

SRR

)

-4

.t'i'J'

"
'.f
L

\,\

T T W W T R R R @ P T T T e N 8T T T T e Y e W T W Y \ - ; : N
T S Dy o Ty S A G oy W A M O e A Y g T VL A
5 > o e o W W -ﬂf -K‘:’X‘M‘h{“}‘ Aﬂl";)(;}(‘-ﬂh-.l"-f:h’:‘n':n'..ﬂ':

C e o e .-n-,..."wuwnnnnnwmvxvmmwmmvmw

| o s

"l

e

e,

VLSI-PLM Pinout i

The pinout of the VLSI-PLM consists of 102 signals described below. These signals are described as . _.

Input (signals to the VLSI-PLM), Output (signals from the VLSI-PLM), and 1/O (a bi-directional signal P

with high impedance state). In addition, there are 9 VDD pins and 9 GND pins. The chip is packaged in a s.j.s._‘:

168 lead pin grid array (PGA). All control signals must be available by 15ns afier the rising edge of :w::.h

k MCLK. All data is assumed to be available during MCLK* following the assertion of the appropriate con- t.S'&.:
trol signal except for memory write which is supplied during the next cycle, N
MAR<27.0> (Output) A 28 bit memory address (usually virtual). ""J
DSPACE (Output) The most significant address bit for memory access. DSPACE is 1 for ;::-:'.‘jj
access to the Data Space and O for access 1o the Code Space (for Code Space SO

L items (o be used as data). This signal and MAR bus forms the memory address R
bus. N

RS

EXCEPT (Output) A one cycle long status signal indicating that an exception has occurred -

on the VLSI-PLM. The cache board generates an interrupt to the host. The
VLSI-PLM supplies the interrupt driver with information on the cause of the
exception by sending the contents of PSW on the MEMDAT bus. There will be
a one cycle delay in communicating the PSW except for collision exception in
which case it is supplied on the next cycle. This signal has the highest priority.
The interface between the VLSI-PLM and the cache board must enforce the

priority of this signal. “.QY
MEMDAT<31..0> (1/0) The primary data path to memory. Memory read/write data to/from the N
MDR passes on this bus, as well as instruction argumenits to argl, arg2, and arg3 LY
during instruction prefetch; and new values for the P register (either 32 bit or 8 'r:"
bit for newp] or newp?2 respectively). R
OPCODE<7..0> {Input) The path for the 8 bit opcode from the prefetch buffer to the instruction I
register used during instruction prefeich by the VLSI-PLM. ‘F.' 5
NEWP)* (Output) A one cycle long control signal to tell the Prefetch Unit that the MEM- I
DAT bus holds a 32 bit value 10 reload the P register. R
f
NEWP2* (Output) A one cycle long control signal to tell the Prefeich Unii that the MEM- ‘u-":
DAT bus holds an 8 bit value to be added to the P register. AON
FAIL* (Output) A one cycle long controf signal (o tell the Preferch Unit that failure has
occurred and that the prefeich buffer is to be flushed. The Prefetch Unit then _“_‘\.
waits for a NEWPL1. ::‘.-
MEMREAD* (Output) A one cycle long control signal to request a memory read. At the .‘.\;:
beginning of the cycle, the MAR bus has the memory address. The VLSI-PLM CEE
Chen

can expect 1o be able to latch the data from the MEMDAT bus towards the end

of the MCLK* cycle (See the discussion below for more information on clock- .2
ing). If the data is in the write buffer or there is a cache miss the cache board e
will stop the VLSI-PLM by freezing MCLK on the high level during the next AN
cycle. o
MEMWRITE* (Output) A onc cycle long control signal 10 request a memory write. The cache :\"
board laches the MAR and MEMDAT busses on the next rising edge of P
MCLK. If the signal is asserted during cycle t the data on MAR and MEMDAT @
buses will be laiched during the rising edge of cycle 142, :-:
INSTREN* {Output) A one cycle long control signal to request a transfer of data from the N :}4‘
prcfetch buffer. The data on the MEMDAT bus may be latched during MCLK*, o
It is the VLSI-PLM's responsibility 1o keep track of whether this is a prefetch1 NS
(opcode and argl) or a prefeich2 (arg2 and arg3). The MEMDAT bus should SN
not be used for other transfers during this cycle. ®
RESET* (Input) An arbivrarily long but synchronized control signal 10 the VLSI-PLM to ; v
reset. This signal will Joad the constant RAM with data from the communica- N
tion page of memory (nexi to last page of data space with a page size of 2K ::-_.:
ACA
.®

B

o
LU}

LA AR
.

TN VUYL
r LIS AR b A R A A A A I_"‘ "Y_l;'_‘;‘{_!l“"‘!m “J
)
"Jf-"‘
fai
e
}‘-"'
f"'.a;'&
o
bytes) and initialize the machine registers. L
LASTMI* (Output) A one cycle long control signal indicating that the last microinstruction ,f.
of a PLM instruction is in execution. That is, end of macro instruction execu- ‘-"::
tion. x:::.w‘
N
FORCEBR (Input) A one cycle long control signal 1 inform the VLSI-PLM to do a forced s
) microbranch to the address on the FORCEADDR bus. :.i:u{‘a

FORCEADDR<S..0> (1/0) A nine bit bus to transfer the forced microbranch address to the VLSI-
PLM when FORCEBR s asserted and to output the contents of the ROM latch

when OUTROMADDR is asserted.

PRECHARGE (Input) A one cycle long contol signal to inform the VLSI-PLM that the
} prcharge circuit of the register files and ROM should be enabled.
MCLK/MCLK* (input) The Master 100ns clock for the VLSI-PLM. The VLSI-PLM may

assume that all data transfer requests (MEMREAD* MEMWRITE®*, and
INSTREN*) occur in one cycle. If the cache board is unable to do this, duc to a
cache miss or buffer full or empty, MCLK will tick one more time and then stop
with a High level. Once the data is available, MCLK will resume. If both
L} MCLK and MCLK* are supplied then they will be used as phase 0 and phase 1
of a two phase nonoverlapping clock.

(Input) A one cycle long control signal 10 reload the MDR register of the VLSI-
PLM once data is available for a memory read after a cache miss. MCLK will
resume 150ns after RLMDR* goes away. (Check this since the PLM uses
175ns)

(Input) A one cycle long control signal 1o initiate the scan of microinstruction
register (MIR) as a part of testing the VLSI-PLM.

TEST2 (Input) A one cyle long contro! signal to initiate the scan of status bits in the
status unit of VLSI-PLM.

RLMDR*

‘ TEST1

SHIFTA
SHIFTIN1
SHIFTIN2
SHIFTOUT1
SHIFTOUT2
EXTERNALFU*

OUTMEMDAT

WAIT

OUTROMADDR

{nput) Clock for shifting data into the master register of LSSD.
(Input) Data for the first scan path controlied by TEST1.

(Input) Data for the second scan path controlled by TEST2.
(Output) Data output from the first scan path controlled by TESTI.
(Output) Data output from the second path controlled by TEST2.

(Output) A one cycle long control output to the cacheboard indicating that a
builtin function is to be executed by an external functional unit. If this signal
and LASTMI are asserted at the same time then it indicates that the transfer of
all the data to the cachboard for the execution of the external builtin function
has been completed.

{Input) Control signal from the cache board indicating that the 32 pads of the
MEMDAT bus should be in the output mode. The pads will also be in the output
mode when MEMWRITE®, NEWP1*, NEWP2*, or diagnostics (internal signal)
is asserted. The 32 pads will be in the input mode if MEMREAD*, RLMDR*,
or INSTREN® is asserted. If none of the above signals for the input or output is
asserted then the 32 pads will be in high impedance state. This signal is an
asynchronous one. It is provided for reading the contents of the blocks in dat
path during the VLSI-PLM testing or debugging the hardware when MCLK is
frozen in the high level (stays in phase 0) and a microinstruction is shifted into
the microinstruction reg.ster.

(Output) A one cycle long control signal to the cache board indicating that the
chip is halted (looping on a microinstruction).

(Input) A one cycle long control input to the VLSI-PLM requesting the contents
of thc ROM latch to be output on FORCEADDRO - FORCEADDRS pins. The

[
.- e d‘. -}
N O R AL Q)

next microinstruction address is in the ROM latch. This signal puts the 9 pads NN
of FORCEADDR in output mode. The 9 pads will be in the input mode when
FORCERBR signal is asserted. If both OUTROMADDR and FORCEBR are not

asserted then the pads will be in the high impedance state.

POWER There are 9 power pins.
GROUND There are 9 ground pins.

1-\:

A%
L)
B

vy

3

A%
4
)

o 1, ‘v*"hﬁr
l.‘

’

L}
L3
'l
LN

o
LKA

Coae
AN
L L H
@
', I‘-‘T » }_ .I

e

.,-ll -ﬁu.v n'_-"\--- ~ LI . - - e - w -
AN LSRG RN 20 LA B T S SN R b oy

I AR A E R R E S L G AR L 54 atA aFh oig aig

0
o
,{ @ﬂ@@kﬂﬂ@ Scherme Revt ee2sss ¥

’ Rev 2 5/30/87

< 50 ns > 50 ns >

CMCLK _| |
— D < —

MCLK | L_

- A - - A -
MCLK®
Phi0

B e

Phi1 - Cle —-»! B |e

Delay A. External inverter delay. The two are equal if pull up & down times
are the same for the external inverter. (4 ns).

Delay B. Non-overlap time after end of Phi1 and before start of Phi0. This is
affected by the external inverter delay (5 ns).

Delay C. Non-overlap time after end of Phi0 and before start of Phi1. This is
affected by the internal driver delay (5 ns).

Delay D Delay of Cache clock to split into MCLK and MCLK* (4 ns).

Rise of Phi0 (Phi1) is caused by fall of Phil1 (Phase0).
Fall of Phi0 (Phi1) is caused by rise of MCLK* (MCLK).

ALy L - -

o e o o

“aenn
AR

. - \
R LH LY, ,\-- (N4 \v -\- \\ ------ et A, _n"'. .
) J. YN n@-‘}-"}h’_\.' S TP R TR I,

5 -.'- '. N
s »

[N A AN A AU KON VORT 40t et g A T N T I N T T O T oy

Rev 2 7/16/86

FORCE BRANCH TIMING revs s3oe7

Rev 4 6/02/87

< 50 ns > 50 ns >
CMCLK _ |
- D e —
MCLK l_
> A < - A -
MCLK*
Phi0
- B e .
Phit . lcle > B e
2!’1: 5
FORCEBR active high
(PIN) Ton=po fho1o
FORCEADDR e >
(PINS) NTTTnas valid force| address A .
ROM ADDR «— "\
Latch ARIHHHTHmy MW ol
oM DATA access 42ns ;’S,_\
- IS
(ROM Latch) ~ LY | valid mjcro-word ':?-*:.
-4 - 4 - &bg;.
"
? MIR X N f‘ﬁ

!

LA

Note: T
'm' is the mux time delay for selecting the Force Address as the j::CE;Z,
next micro-address. AN

B

° ."]"7
L]
L]
PO

ROM Address is latched in on Phi0. ROM data latch is written in Phi1 and
data is valid at end of Phit. MIR latches in the microword in PhiO.

ROM data is available before end of Phi1, and stays valid until end of Phi0.

Veneatam e et maa e o
DS GO O8O0 G ORI i Ny

[FTTTT T mmRERenEay TR AR A NN AN WY WV Y. R B ™ ™ N " =R "MK @
FORGE BRANGH LOWY Fev1 swe
(ROM ADDRESS OUT)
< 50 ns —re 50 ns >
CMCLK _| L
-+ De
MCLK |
> A < - A <
MCLK®
Phi0
— B &
Phi1 ol ol o le S
FORCEBR le——H inactive o R
(PIN) Ton=15 ¢ ;:_:2\-
OUTROMADDRe 1> — R
(PIN) active high T?: :f‘:.:fﬁ
42 AT
ROM ADDR - s - ;
Latch RT3y ROM address | NN\ o
< Ton=54 > Jk 0 :_E
Prre . DI Ao7 zdess o MM |

Cacheboard specs: FORCEBR (from CB) valid in <15ns from rise of CMCLK.
When FORCEBR is low, CB expects ROM Address out in <54ns.
OUTROMADDR comes from interface board, causes chip to open FORCEADDR
/O pads for output and to drive out 9-bit ROM address.
FORCEBR must be low when OUTROMADDR is high.

............
............

MEMREAD TIMING Revs s
CACHE HIT
t < 50 ns > 50 ns ;+ !
CMCLK | |
—» De
MCLK [__
—> A 4 —»> A<
MCLK*
PhiC
- B e
Phi1 - Cle- —» B (e
—»5 4
"(A,En':ﬁiiﬁ)D _l active low
MEM,READ \ﬁ active low
(pin)
m from negative edge of MQLK" 10
MEMREAD :
(external latch active |low
«—20§
DSPACE (PIN) RN valid_address bit A
(external latch) N valid_acdress bil
-5 4- -5 94
MARBUS N valid address N
DEE Bl <»
V5= TS T MAMNHIHIIIIIINGD AMMEEIIN
cache hit
MDR MMINNDS
<>
10

MEMREAD* signal and address must be available to cache board no later than 20ns
after rising edge of CMCLK to allow sufficient time for stopping clock in the case

of a cache miss.

b“.\’ "‘I
.:' ..‘.‘f.'v il
2 e SV ' i

o

L:‘ -'.;'_ c‘. [.f\f'.
lk‘: .':".{':,) ‘J

YASA @

Pl o
L

4 A ‘\;1‘_1(1

w
«-l'-i)‘
Fala

e U

Ca) 'l .- ‘. .l
AR of NENEN

LR R R
Pt SLASANSN S
LT, R » N
.'./.-_.!“,.» "

b

l.l } 1"1‘!"
s

,;:' o e,
L . S‘l l,:‘ ‘:

NSy Y
AR AN

B vy
A

e -

¢ .

R ey
NAAARAR

TR TAS A RTRTRS MRS WY RO R KRR T e Ty Va s
B R R N N N AT A Y Y N Y PNy Cad o i o g
S e
f Rev 3 7/24/87 EE%
| MEMREAD TIMING fo3 2o 23
CACHE MISS Rev 5 6/04/87 o
SASK
®
R lock y ’Eﬁ:
100 clock stopped esime cloc f;?.;?
< > paue
CMCLK el
— 5 & —> 5 @ 5 < NN
MCLK RN
>4 @ S
MCLK*
PhiD
Phi1
— 5 |-
MEMREAD"| | active
(Rom Latch) ' 40
——P w MCLK*
MEMREAD* active 1o
(external latch) 158" Krom fall of MCLK"
 DSPACE PIV) K3 Valg 3007e3s oA ,EhHy
(external latch) N vai'd address b N
—» 5 @ — 5 4
MARBUS ~ N N
41—5—" < 20 >
MEMDATBUS 2 Y {:‘id DN
MDR A
44—
18

Cache Board Specs: when cache-miss occurs, CMCLK is kept from rising
Phi1 will be high when stopping clock.

until data is available.

f R R M b L Tal Rt €ats a' -4

A T TV o v e e e e e
T AR
NN
a4 ’V‘.
25
NENMNN B A Rev 5 6/03/87 A
MEMWRITE TIMING R
Rev 6 6/09/87 e
002
eVl
AL
< 100 ns > 100 ns > ::,:;::'.Z:::
CMCLK - o
— Yot
MCLK B
— A e —»> Ae
MCLK* l
Phi0
> B e -~ C - ‘
Phi1
— 54—
MEMWRITE" " || active low
(ROM latch)) RELH
—p 0@ — 0@ ::E'_‘_.‘-_::.
MEMWRITE* active| Jlow NN
(external latch) ‘:-:‘:::'.)
YT OODY
(MIR) =T Vag SgssIon X W .
lached into master in Phil T
DSPACE (DFF) S N vald address bil :.-sj:,
{external latch] N N valig_adgress b1 1:.".::'-
* 1O - -~ 20 - :j;:_.::'
.,
MARBUS N N valid address .
< —p
15
MDR N data out N
17 max \
——P mdr->memdatbus
MEMC ATBUS \\\ recycle charge k\\\\< recycle charge
(OffChlp) < > < >
cycle 't' ¢ cycle 't+1’
27
Cacheboard specs: cycle t, MEMWRITE*® valid <20ns;
cycle t+1, Address valid €20ns, Memdatbus valid €27 ns from rise of CMCLK.
: T A S e LA Sl e e e e

IR A L S L A Y TS B WXJ' xmmmx:‘mmmmma - MYNTLVLY - . Casiincstecate- gh
LT - - MW : RN O >
- s EaE e T A AV add

Rt iy avavew
iy

R
R 3 7 ";
o ev 124/86 R
NEWPR1 TIMING Rev 4 5/30/87 AN
Rev 5 6/05/87 \,33
t t+1 s
- 50 ns > 50 ns > 5
CMCLK | | R
—- D« i
MCLK L I_ R0]
>l A < > A -
MCLK" R
Phi0
—- B e
Phi1 —» Cle- — B e
-5 4
NEWP1* .
(rom latch) P_I active low
NEWP1* .
(pin) active low
2 from Jalling edge of MCLK"
NEWP1* s r
(external fatch) 4—; active {low 10
1P
) 8
MDRtoMEMDAY active thigh 3
(MIR)
MDR valid data \ N
15 \ 15
o
MEMDATBUS &\ charge recycling {\\\
< \
cacheboard S 4’&
jatch l N

Cache board specs: NEWP1* valid in €20ns, data from MEMDATBUS valid
in €27ns (after rise of CMCLK). Data going offchip can also come from R
& CP (Regfile). R -> Memdatbus; CP -> Tiinbus -> Memdatbus (longest
delay). in any case, Memdatbus must be valid <15ns after rise of Phi0.

. - - -
B VA YRS SRR I T DAy

"

N AT RN
N

pre et LW

i e N b R L R B0 1S ottt ah sk 120 6 e A A e 0 g ot o o

EWWE MITN Rev 2 5/30/87
, NEWP2 TIMING Rev: soow
t t+1
< 50 ns > 50 ns >
CMCLK _| |
— De
MCLK l
- A <4 - A <
MCLK*
Phi0 7[
B e
Phi1 - Cle- —» B (e
5 (4
NEWP2* .
(rom latch) hl\ active low
NEWPZ' active low
{pin)
— < 20 * from Jalling edge of MCLK"
(external laich} active | low P
10
8 . .
TtoT1INbus ® active |high <
(MIR)
m/s gransfer
-3 4
T block N \ N
15 15
T1iNbus e \1 -
MEMDATbus N\ valid data charge recycling N\
—
caﬁg?ggard @ \\ valid data

in £27ns (after rise of CMCLK).
Phasei*. T -> Ttinbus -(bus connector)-> Memdatbus.
be valid <15ns after rise of Phi0.

Cache board specs: NEWP2* valid in €20ns, data from MEMDATBUS valid
T block Master/Slave transter is done in
Memdatbus must

R T % Nt L AT

¥

AT e et e S

MESER AR St s i ST5te

A
N

L
=

-'- Py

AR

\;r L

'.,:4. .

WeAs

2
Y 5 &
NNy

AR
A
% Ju e

¢

l' ’.l
x
! > P,

L3
*
[}

LIy
i
- 'f' lf

RS
X
vy

's.\,'.:‘-'
'y v @

R XA S
oY,
&

(YEY
......

)

""“ T R A A Y K N N T T P T T LR It et g o o= ghRadaraia< o oty an o T Y e v
P, W
e
PREEY TIMING Rev 5 6/04/87 o
‘] J J ! ev N,
= Rev 6 6/09/87 N
t S
t+1 mLad
< 50 ns >¢ 50 ns > (&?&
CMCLK _| | w
> De ; gg
MCLK &
L .
- A 4 - A < ::5
MCLK* :\.
P
Phi0
B e
Phi1 - Cle- —- B |e
PREF1 - -
(Rom ‘atch)‘ﬁf’ < active high
3
3 - <
ﬁﬁg" —> - active high 1
'N(SJE)EN actiye | low
20
< >
r—
Oﬁff)DE O OO OO Vi daia T EHROHEERITTTTY
>ie
Opcode latch e B-bif opcoda supplied
4—2L> 7}logic levels + fbuf & mux
Opcode OO EOOHE 557 oM agdiess
PRI
Memdatbus AR ARG] value s N
ARGH % \-

Cacheboard specs: INSTREN® valid in <20ns atter rise of CMCLK. Cacheboard

provides OPCODE and ARG1 <8ns after INSTREN® is valid.
Opcode pins and latch are 8-bits. Opcode goes thru Opcode Decode to become

9-bit ROM address (0:8), with bit 3 modified & bit 8 added.

R T T TN R - e = M
A A T T T A T P

e e T T Tyy— V

Tom N SR TR TR AT T “.‘._\\ﬂ-.-v.‘.-vr-‘ oy

o[

[
._:.‘4‘?
=) ! Rev 3 6/04/87 et
PREF2 TIMING v 8 ¥
Rev 4 6/09/87 Ny
;.r",',q
t 50 ns 50 ns t+1 o
e >« > 2%
CMCLK | | %
- De — -
MCLK l_
> A - - A<
MCLK*
Phi0
B e
Phi1 - Cie— —- B (e
l
PREF2 - -
(Rom Iatch)_:I3 * active high
5
mﬁfz nalng actiye |high s
E mis tra néfer mis trgnsier
N?[e)gj’ 2 "’3\ active high = 3le-
TREN" _ T
IN(Smej)EN 20 active low 3:’.';,::
O
Opcode latc ~B-b1 opcode rémajns unchange ‘:‘
Memdatbus SRR ARG273 falue _\ N el
AN
ARG2/3)

Cacheboard specs: INSTREN®* valid in <20ns after rise of CMCLK. OPCODE and
ARG2/3 from Cacheboard are valid <8ns after INSTREN® is valid.

Least significant 8 bits of Memdatbus go into ARG2, the next 8 bits into
ARG3. (ARG2 & ARGS3 both output into the least significant 8 bits of Bbus.

4
<
o

4

|

AT
»

o
&

PR

T T e A A A T N R TR R RO R R R YR T Y TN
} 2 o ‘ RO st st hias et L ek ak e asne Jed

X1
"
AN

U Y'Y

R
ANt

2

gyt

SINGLE GYGLE TIMING 2 720 &

‘I
AN
f L) "¢~'

< 100ns 100ns
CMCLK [
S.C. active
CONT.
\\\\\> oy
PASSMCLK ———» stopping processor clotk
MCLK
MCLK* 2
e
Phi0 , -2
s
o
Phit VAN
.’t":‘:.
.2
S
".’::.-_~..,
sl
Cacheboard Specs: Single Cycle (SC) is valid in cycle t of CMCLK. MCLK o ';
runs 1 more cycle (t+1), then gets stopped (PASSMCLK low). Some NPy
number of cycles later, Continue is active to reactivate MCLK (PASSMCLK ;:.I-;b'
high). SC may also be valid for another single cycle execution. ;-2:::‘.;-.
PASSMCLK must settle well before the rising edge of CMCLK for MCLK to vy
be stopped and reactivated properly. o e
AN A S
NSO
r_:-r:a:
; f:_‘..}

A LAY LL PO ATt

NV W WY, L a 02 e L alin"atat fat ?_d‘.ﬁ.’ U'.-F_ * et 0y, g
B B 5O MO WA DO WLOWUW = 2% -y - - - : -
LA,

%
5»3
I.’I

L+,
'y .-\ll'

active

—>s e

19

(i

¥ ey
S

»

Pl

[

[

%(. s
e
A

‘:“

L
o
el

3
F
o

.
2

P

R
s L]

YN
%

P

Pl

7

-
3@

l

ANl Al alA
e A

9

A A N
"l"‘l.l{
v

he |

~ N

Y %
.I.l"'l .

4.}\;’1;' " A \r.-~ L S N e et A LR NN A m R~ .~ o
P AT AT B ,f.'.f'.r",,-'*_.*;.\',.‘\,\-{'\ e T T AT T L T
ol T A R N NN A AT AT AT

~ \f\

[

NMMN".WT&T‘-’\ ROESR AR EA NN A A IR 0 A0 AN AR S S A S u AR 0% e v oliat Bun ges o e j oy 0 0.0 4 SRR N OO TV I VIR O LN OV
S
Y
®
N
)
M

]

-
L]
o
S
D

SINGLE INSTRUCTION Rev1 6/09/87 :

100ns 100ns 100ns
< —>-<4 -4 >4

)
)
)
[

o

CMCLK

S.L active

N —>s 4
PASSMCLK o~

‘1
L 24
7

- - ,-.’..,’ A
» (]
e e

7

-
L}

MCLK =
MCLK®
Phi0 | {

Phit
Ko laehy s active

Cacheboard Specs: Single Instruction (S1) is valid in cycle t of CMCLK.
MCLK runs several more cycles until LASTMI* is low, then gets stopped
(PASSMCLK low). Some number of cycles later, Continue is active to
reactivate MCLK (PASSMCLK high). SI may also be valid for another
single instruction execution. PASSMCLK must settie well before the
rising edge of CMCLK for MCLK to be stopped and reactivated properly.

RPN -
I. ’.f'-{'n,':.'n"-,"f'f . b
» | 0 5 _f

e
A

Y

oA
.

’ \"'\‘-:q
v

A Y v o
x. . ,.’."- ‘:

[NN 4

!

=

e

l\‘

o
TR LR AN Y N W™ A v [-)
P e R N A T S e A

-)*N nﬂﬂ‘.
@RI 8
LA D,
AL N NN Y VN

¢
d
:
:
:
i

eeleE e,

active

ey -

stopping processor clock

«Ty
NRCAJ

s

.
PUE il

e N AT
Tatn h du oW

"o 't_
AN AN

~ % _\',"-" .
AR Al

e

